Hartzell / Da Silva / Shea | MEMS Reliability | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 291 Seiten

Reihe: MEMS Reference Shelf

Hartzell / Da Silva / Shea MEMS Reliability


1. Auflage 2010
ISBN: 978-1-4419-6018-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 291 Seiten

Reihe: MEMS Reference Shelf

ISBN: 978-1-4419-6018-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



The successful launch of viable MEMs product hinges on MEMS reliability, the reliability and qualification for MEMs based products is not widely understood. Companies that have a deep understanding of MEMs reliability view the information as a competitive advantage and are reluctant to share it.MEMs Reliability, focuses on the reliability and manufacturability of MEMS at a fundamental level by addressing process development and characterization, material property characterization, failure mechanisms and physics of failure (POF), design strategies for improving yield, design for reliability (DFR), packaging and testing.

Hartzell / Da Silva / Shea MEMS Reliability jetzt bestellen!

Weitere Infos & Material


1;Foreword;5
2;Preface;7
3;Acknowledgements;9
4;Contents ;10
5;1 Introduction: Reliability of MEMS;13
5.1;References;19
6;2 Lifetime Prediction;20
6.1;2.1 Introduction;20
6.2;2.2 Mathematical Measures of Reliability;20
6.3;2.3 Reliability Distributions;22
6.3.1;2.3.1 Bathtub Curve;22
6.3.2;2.3.2 Exponential Distribution;23
6.3.3;2.3.3 Weibull Distribution;24
6.3.4;2.3.4 Lognormal distribution;26
6.3.5;2.3.5 Acceleration Factors;30
6.3.6;2.3.6 Lifetime Units;35
6.4;2.4 Case Studies;36
6.4.1;2.4.1 Texas Instruments Digital Mirror Device;36
6.4.2;2.4.2 Case Study: Analog Devices Accelerometer;41
6.4.3;2.4.3 Case Study: RF MEMS;45
6.5;2.5 Summary;52
6.6;References;52
7;3 Failure Modes and Mechanisms: Failure Modes and Mechanisms in MEMS;54
7.1;3.1 Introduction;54
7.2;3.2 Design Phase Failure Modes;56
7.2.1;3.2.1 Functional Failure Modes;56
7.2.1.1;3.2.1.1 Element Design;57
7.2.1.2;3.2.1.2 System Level Design;62
7.2.1.3;3.2.1.3 Package Design;63
7.2.2;3.2.2 MEMS Material Failure Modes;67
7.2.2.1;3.2.2.1 Thermo-Mechanical (TM) Failures;68
7.2.2.2;3.2.2.2 Electrical (EL) Failures;73
7.2.2.3;3.2.2.3 Environmental (ENV) Failures;74
7.2.3;3.2.3 Non-analyzed Conditions;75
7.2.3.1;3.2.3.1 Leakage Currents;76
7.3;3.3 Manufacturing Failure Modes;77
7.3.1;3.3.1 Front End Process Defects;77
7.3.1.1;3.3.1.1 Local (Wafer) Defects;78
7.3.1.2;3.3.1.2 Material Transport -- Deposit/Etch Failures;81
7.3.1.3;3.3.1.3 Stress Relaxation Effects;84
7.3.1.4;3.3.1.4 Process Tribological Failures -- Stiction;84
7.3.1.5;3.3.1.5 Wafer Bonding (or Hermiticity);87
7.3.2;3.3.2 Back End Process Failures;89
7.3.2.1;3.3.2.1 Wafer Dicing;89
7.3.2.2;3.3.2.2 Wafer Handling;90
7.3.2.3;3.3.2.3 Packaging;91
7.4;3.4 Summary;91
7.5;References;92
8;4 In-Use Failures;95
8.1;4.1 Introduction;95
8.2;4.2 Mechanical Failure Modes;95
8.2.1;4.2.1 Fracture;96
8.2.2;4.2.2 Mechanical Shock Resistance;100
8.2.2.1;4.2.2.1 Introduction;100
8.2.2.2;4.2.2.2 Response to Shocks;103
8.2.2.3;4.2.2.3 Increasing Shock Resistance;109
8.2.2.4;4.2.2.4 Simple Model for Critical Acceleration and Case Study on SOI Micro-Mirrors;113
8.2.2.5;4.2.2.5 Conclusions on Shock;120
8.2.3;4.2.3 Vibration;121
8.2.4;4.2.4 Creep;124
8.2.4.1;4.2.4.1 Introduction;124
8.2.4.2;4.2.4.2 Reducing Creep in MEMS;125
8.2.4.3;4.2.4.3 Metal Films on Silicon MEMS;127
8.2.4.4;4.2.4.4 Conclusions on Creep;128
8.2.5;4.2.5 Fatigue;128
8.2.5.1;4.2.5.1 Introduction to Fatigue in Brittle and Ductile Materials;128
8.2.5.2;4.2.5.2 How to Measure Fatigue in MEMS;129
8.2.5.3;4.2.5.3 Silicon MEMS;129
8.2.5.4;4.2.5.4 Metals;131
8.3;4.3 Electrical Failure Modes;133
8.3.1;4.3.1 Charging in MEMS;133
8.3.1.1;4.3.1.1 Introduction to Dielectric Charging;133
8.3.1.2;4.3.1.2 Mitigation of Charging Effects;136
8.3.1.3;4.3.1.3 Geometry Changes;137
8.3.1.4;4.3.1.4 Charge Dissipation Layers;141
8.3.1.5;4.3.1.5 Multi-Step Voltage Drive for RF MEMS Switches;143
8.3.2;4.3.2 Electrical Breakdown and ESD;148
8.3.2.1;4.3.2.1 Electrical Breakdown in a Gas for Micron-Scale Gaps;149
8.3.2.2;4.3.2.2 Electrical Breakdown Across Solid Dielectrics;153
8.3.2.3;4.3.2.3 ESD and EOS;154
8.3.3;4.3.3 Electromigration;156
8.4;4.4 Environmental;158
8.4.1;4.4.1 Radiation;159
8.4.1.1;4.4.1.1 Typical Doses for Space Applications;159
8.4.1.2;4.4.1.2 Damage Mechanisms;161
8.4.1.3;4.4.1.3 Degradation Processes;161
8.4.1.4;4.4.1.4 Degradation Effects;162
8.4.1.5;4.4.1.5 Review of Published Data on MEMS Radiation Tolerance;163
8.4.1.6;4.4.1.6 Suggestions for Radiation-Hardening MEMS;168
8.4.2;4.4.2 Anodic Oxidation and Galvanic Corrosion of Silicon;169
8.4.2.1;4.4.2.1 Origin of Anodic Oxidation;169
8.4.2.2;4.4.2.2 Observations and Mitigation;170
8.4.2.3;4.4.2.3 Galvanic Corrosion During Release in HF;173
8.4.3;4.4.3 Metal Corrosion;176
8.5;4.5 Conclusions;180
8.6;References;181
9;5 Root Cause and Failure Analysis;188
9.1;5.1 Introduction;188
9.2;5.2 FMEA, Failure Mode and Effects Analysis;189
9.2.1;5.2.1 RPN (Risk Priority Number) Levels;190
9.2.2;5.2.2 RFMEA Example;190
9.3;5.3 Case Study of RFMEA Failure Mode;194
9.3.1;5.3.1 RFMEA Safeguard: Design for Reliability, Mirror Curvature Matching;194
9.3.2;5.3.2 RFMEA Safeguard: Test for Curvature;197
9.3.3;5.3.3 RFMEA Safeguard: Perform Accelerated Thermal Testing and Compare Radius of Curvature Change to Predictions;199
9.3.4;5.3.4 Implementation of RFMEA Learning into Production;201
9.4;5.4 Failure Analysis as a Tool for Root Cause;202
9.5;5.5 Analytical Methods for Failure Analysis;203
9.5.1;5.5.1 Laser Doppler Vibrometry (LDV);203
9.5.2;5.5.2 Interferometry;205
9.5.3;5.5.3 Scanning Electron Microscopy (SEM);207
9.5.4;5.5.4 Electron Beam Scatter Detector (EBSD);208
9.5.5;5.5.5 Transmission Electron Microscopy (TEM);209
9.5.6;5.5.6 Focused Ion Beam (FIB);210
9.5.7;5.5.7 Atomic Force Microscopy (AFM);212
9.5.8;5.5.8 Energy Dispersive X-ray Analysis (EDS, EDX, EDAX);213
9.5.9;5.5.9 Auger Analysis;215
9.5.10;5.5.10 X-Ray Photoelectron Spectroscopy (ESCA/XPS);217
9.5.11;5.5.11 Time of Flight Secondary Ion Mass Spectroscopy (TOFSIMS);219
9.5.12;5.5.12 Fourier Transform Infrared Spectroscopy (FTIR);220
9.6;5.6 Summary;222
9.7;References;222
10;6 Testing and Standards for Qualification;224
10.1;6.1 Introduction;224
10.2;6.2 Testing MEMS;224
10.2.1;6.2.1 Classes of MEMS Devices;225
10.3;6.3 Test Equipment for MEMS;226
10.3.1;6.3.1 Shaker Table for Vibration Testing;227
10.3.2;6.3.2 Optical Testing for Deformable Mirrors;230
10.3.3;6.3.3 Dynamic Interferometry;232
10.3.4;6.3.4 MEMS Optical Switch Production Test System;232
10.3.5;6.3.5 Laser Doppler Vibrometer/Strobe Video System;233
10.3.6;6.3.6 SHiMMer (Sandia High Volume Measurement of Micromachine Reliability);236
10.4;6.4 Quality Standards and Qualifications;236
10.4.1;6.4.1 Mil-Std-883 (Revision H is current) ;243
10.4.1.1;6.4.1.1 Temperature ranges from Stabilization Bake, Method 1005.9;243
10.4.1.2;6.4.1.2 Temperature cycling, Method 1010.8;243
10.4.1.3;6.4.1.3 Variable Frequency Vibration, Method 2007.3;245
10.4.1.4;6.4.1.4 Mechanical Shock, Method 2002.5;245
10.4.1.5;6.4.1.5 Constant Acceleration, Method 2001.3;245
10.4.2;6.4.2 Mil-Std-810 (Current Revision G);246
10.4.2.1;6.4.2.1 High Temperature, Method 501.5;247
10.4.2.2;6.4.2.2 Thermal Shock, Test Method 503.5;248
10.4.3;6.4.3 Telcordia Standards;249
10.4.4;6.4.4 Automotive Standards;249
10.5;6.5 MEMS Qualification Testing;251
10.5.1;6.5.1 ADI Accelerometers for Airbag Deployment;251
10.5.2;6.5.2 Motorola MEMS Pressure Sensors;254
10.5.3;6.5.3 Example: Space and Military Qualification;257
10.5.3.1;6.5.3.1 NASA Space Random Vibration Specifications;257
10.5.3.2;6.5.3.2 DMD Ruggedization -- Example of a MEMS Product Tested to Extreme Conditions;258
10.6;6.6 Summary;259
10.7;References;260
11;7 Continuous Improvement: Tools and Techniques for Reliability Improvement;262
11.1;7.1 The Yield-Reliability Connection;262
11.2;7.2 Yield Improvement Techniques;265
11.2.1;7.2.1 Design for Manufacturability (DfM);265
11.2.2;7.2.2 Design for Test (DfT);272
11.2.3;7.2.3 Process and Packaging Integration;275
11.2.4;7.2.4 Yield Modeling;277
11.3;7.3 Reliability Enhancement;278
11.3.1;7.3.1 Process Stability and Reproducibility;278
11.3.1.1;7.3.1.1 Process Characterization;279
11.3.1.2;7.3.1.2 Material Property Characterization;280
11.3.1.3;7.3.1.3 Test Structures and PCMs;282
11.3.2;7.3.2 Product Qualification;287
11.3.2.1;7.3.2.1 Acceleration Factors;287
11.3.2.2;7.3.2.2 MEMS Qualification Testing;289
11.4;7.4 Design for Reliability (DFR);291
11.5;7.5 Summary;293
11.6;References;294
12;Subject Index;298



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.