Harris | Fatigue in Composites | E-Book | sack.de
E-Book

Harris Fatigue in Composites

Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics
1. Auflage 2003
ISBN: 978-1-85573-857-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics

E-Book, Englisch, 768 Seiten

Reihe: Woodhead Publishing Series in Composites Science and Engineering

ISBN: 978-1-85573-857-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



This major handbook is the first authoritative survey of current knowledge of fatigue behaviour of composites. It deals in detail with a wide range of problems met by designers in the automotive, marine and structural engineering industries. Compiled from the contributions of some of the best-known researchers in the field, it provides an invaluable, practical and encyclopaedic handbook covering recent developments. - Comprehensively discusses the problems of fatigue in composites met by designers in the aerospace, marine and structural engineering industries - Provides a general introduction on fatigue in composites before reviewing current research on micromechanical aspects - Analyses various types of composites with respect to fatigue behaviour and testing and provides in-depth coverage of life-prediction models for constant variable stresses

Harris Fatigue in Composites jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover ;1
2;Fatigue in Composites: Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics;4
3;Copyright Page
;5
4;Table of Contents;6
5;Preface;14
6;Acknowledgements;17
7;Contributor contact details;18
8;Part I: Introduction to fatigue in composites;24
8.1;Chapter 1. A historical review of the fatigue behaviour of fibre-reinforced plastics;26
8.1.1;1.1 Introduction;26
8.1.2;1.2 Fatigue phenomena in fibre composites;27
8.1.3;1.3 Concluding comments;53
8.1.4;1.4 Bibliography;54
8.1.5;1.5 References;54
8.2;Chapter 2. Fatigue test methods, problems and standards;59
8.2.1;2.1 Introduction;59
8.2.2;2.2 Fatigue data requirements;59
8.2.3;2.3 Fatigue testing requirements;61
8.2.4;2.4 Fatigue test equipment;62
8.2.5;2.5 Artefacts in fatigue testing;65
8.2.6;2.6 Standardized test methods;75
8.2.7;2.7 Precision data;79
8.2.8;2.8 Data presentation;81
8.2.9;2.9 Concluding comments;82
8.2.10;2.10 Future trends;84
8.2.11;2.11 Acknowledgements;84
8.2.12;2.12 References;85
8.3;Chapter 3. Fatigue under multiaxial stress systems;86
8.3.1;3.1 Introduction;86
8.3.2;3.2 Fatigue failure criteria;86
8.3.3;3.3 Material properties degradation;91
8.3.4;3.4 Progressive fatigue damage modelling;101
8.3.5;3.5 Material characterization;103
8.3.6;3.6 Experimental evaluation of the model;116
8.3.7;3.7 Conclusions;131
8.3.8;3.8 References;132
9;Part II: Micromechanical aspects of fatigue in composites;138
9.1;Chapter 4. The effects of aggressive environments on long-term behaviour;140
9.1.1;4.1 Introduction;140
9.1.2;4.2 Aqueous environments;140
9.1.3;4.3 Moisture sensitivity of resins;143
9.1.4;4.4 Thermal spiking;146
9.1.5;4.5 Thermomechanical response of matrix resins;146
9.1.6;4.6 Effect of moisture on composite performance;149
9.1.7;4.7 Fibre-dominated properties;152
9.1.8;4.8 Role of the matrix and interface;158
9.1.9;4.9 Environmental stress-corrosion cracking (ESCC) of GRP;160
9.1.10;4.10 Designing for stress-corrosion resistance;165
9.1.11;4.11 Non-aqueous environments;166
9.1.12;4.12 Conclusions;168
9.1.13;4.13 References;168
9.2;Chapter 5. The effect of the interface on the fatigue performance of fibre composites;170
9.2.1;5.1 Introduction;170
9.2.2;5.2 Effect of interface parameters on fatigue performance;170
9.2.3;5.3 Effect of other parameters that indirectly affect the interface on fatigue performance;178
9.2.4;5.4 Effect of fatigue loading on interface;186
9.2.5;5.5 Conclusions;191
9.2.6;5.6 References;193
9.3;Chapter 6. Delamination fatigue;196
9.3.1;6.1 Introduction;196
9.3.2;6.2 The interlaminar fracture mechanics approach for fatigue;198
9.3.3;6.3 Characterizing delamination in fatigue;200
9.3.4;6.4 Modelling a delamination;206
9.3.5;6.5 Using fracture mechanics analysis as a design tool;207
9.3.6;6.6 Structural integrity prediction;210
9.3.7;6.7 References;210
9.4;Chapter 7. The fatigue of hybrid composites;212
9.4.1;7.1 Introduction;212
9.4.2;7.2 Comparison of fatigue data;218
9.4.3;7.3 Materials and experimental procedures;221
9.4.4;7.4 Results and discussion;225
9.4.5;7.5 Fractography;256
9.4.6;7.6 Conclusions;259
9.4.7;7.7 Acknowledgements;260
9.4.8;7.8 References;261
9.5;Chapter 8. Non-destructive evaluation of damage accumulation;265
9.5.1;8.1 Introduction;265
9.5.2;8.2 Acoustic NDE techniques;266
9.5.3;8.3 Acoustic emission;277
9.5.4;8.4 Radiography;279
9.5.5;8.5 Thermographic NDE methods;282
9.5.6;8.6 Eddy currents;282
9.5.7;8.7 Moiré interferometry;282
9.5.8;8.8 Summary and concluding remarks;284
9.5.9;8.9 Acknowledgements;285
9.5.10;8.10 Information sources;285
9.5.11;8.11 References;285
10;Part III: Fatigue in different types of composites;290
10.1;Chapter 9. Short-fibre thermoset composites;292
10.1.1;9.1 Introduction;292
10.1.2;9.2 Structure and composition of short-fibre thermoset composites;293
10.1.3;9.3 Static behaviour;293
10.1.4;9.4 Fatigue behaviour;301
10.1.5;9.5 Conclusions;315
10.1.6;9.6 References;315
10.2;Chapter 10. Woven-fibre thermoset composites;319
10.2.1;10.1 Introduction;319
10.2.2;10.2 Fatigue performance of laminated composites;321
10.2.3;10.3 Woven-fabric laminated composites;322
10.2.4;10.4 Fatigue testing;326
10.2.5;10.5 Fatigue damage in woven-fabric composites;327
10.2.6;10.6 Fatigue loading: stiffness, strength and life;331
10.2.7;10.7 Recent studies of the fatigue behaviour of WF composites;333
10.2.8;10.8 Future trends;333
10.2.9;10.9 Nomenclature;334
10.2.10;10.10 References;334
10.3;Chapter 11. Fatigue of thermoplastic composites;337
10.3.1;11.1 Introduction;337
10.3.2;11.2 Thermoplastics;339
10.3.3;11.3 Continuous-fibre composites;344
10.3.4;11.4 Short-fibre composites;354
10.3.5;11.5 Future of thermoplastic composites;357
10.3.6;11.6 References;358
10.4;Chapter 12. Fatigue of wood and wood panel products;362
10.4.1;12.1 Introduction;362
10.4.2;12.2 The structure and properties of wood and timber;362
10.4.3;12.3 Fatigue life of wood and panel products;366
10.4.4;12.4 Dynamic property changes in fatigue of wood and panel products;372
10.4.5;12.5 Fatigue damage development in wood and panel products;379
10.4.6;12.6 Fatigue in timber joints;380
10.4.7;12.7 Fatigue of natural fibre composites;381
10.4.8;12.8 Conclusions;381
10.4.9;12.9 Acknowledgements;381
10.4.10;12.10 References;382
11;Part IV: Life-prediction methods for constant stress and variable stress;386
11.1;Chapter 13. Physical modelling of damage development in structural composite materials under stress;388
11.1.1;13.1 Introduction;388
11.1.2;13.2 A framework for understanding damage development;388
11.1.3;13.3 A question of design route;390
11.1.4;13.4 A question of physical modelling;392
11.1.5;13.5 A question of fatigue;395
11.1.6;13.6 Physical modelling of fatigue damage development;399
11.1.7;13.7 Physical modelling of fatigue damage development at stress concentrators;419
11.1.8;13.8 Computer implementation;431
11.1.9;13.9 Summary and final remarks;432
11.1.10;13.10 Acknowledgements;433
11.1.11;13.11 References;433
11.2;Chapter 14. Micromechanical models;436
11.2.1;14.1 Introduction;436
11.2.2;14.2 Damage accumulation in composite materials;437
11.2.3;14.3 Changes in stiffness;439
11.2.4;14.4 Changes in local material strength;440
11.2.5;14.5 Strength: an internal state variable and damage metric;442
11.2.6;14.6 Strength of a composite material: ‘Critical element’ concepts;442
11.2.7;14.7 Non-uniform stress states: characteristic material dimensions;444
11.2.8;14.8 Strength evolution;444
11.2.9;14.9 Applications;449
11.2.10;14.10 Conclusions;452
11.2.11;14.11 Acknowledgements;453
11.2.12;14.12 References;453
11.3;Chapter 15. A computational mesodamage model for life prediction for laminates;455
11.3.1;15.1 Introduction;455
11.3.2;15.2 The damage scenarios on the micro structural scale;455
11.3.3;15.3 The 3D damage model for laminates according to scenarios 3 and 4;456
11.3.4;15.4 The ‘micro’ modelling of laminate composite for scenarios 1 and 2;457
11.3.5;15.5 Mesomodel of the laminated composite;459
11.3.6;15.6 Comparison with experiments for [0n/90m]s;460
11.3.7;15.7 Perspectives;463
11.3.8;15.8 References;464
11.4;Chapter 16. A statistical study of the fatigue performance of fibre-reinforced composite laminates;465
11.4.1;16.1 Introduction;465
11.4.2;16.2 Fatigue and methodology;466
11.4.3;16.3 Statistical model;470
11.4.4;16.4 Stress redistribution function;472
11.4.5;16.5 Evaluation of fatigue performance of composite laminates;476
11.4.6;16.6 Concluding remarks;486
11.4.7;16.7 Acknowledgements;491
11.4.8;16.8 References;491
11.5;Chapter 17. Analysis of matrix crack-induced delamination in composite laminates under static and fatigue loading;493
11.5.1;17.1 Introduction;493
11.5.2;17.2 Stiffness properties of cracked laminates with delaminations;494
11.5.3;17.3 Delamination onset and growth prediction;509
11.5.4;17.4 Conclusions;519
11.5.5;17.5 Acknowledgements;521
11.5.6;17.6 References;522
11.5.7;17.7 Appendices;523
11.6;Chapter 18. Fatigue strength of composites under variable plane stress;527
11.6.1;18.1 Introduction;527
11.6.2;18.2 Life prediction under combined stress: theoretical considerations;528
11.6.3;18.3 Experimental and property evaluation;532
11.6.4;18.4 Verification of life prediction methodology;539
11.6.5;18.5 Structural application example: Inboard part of a rotor blade;543
11.6.6;18.6 Concluding remarks;544
11.6.7;18.7 References;546
11.7;Chapter 19. Life prediction under service loading spectra;549
11.7.1;19.1 Introduction;549
11.7.2;19.2 Stiffness degradation under block-type loading spectrum;551
11.7.3;19.3 Statistical distribution of fatigue life;554
11.7.4;19.4 Experimental program;555
11.7.5;19.5 Experimental verification;556
11.7.6;19.6 Conclusions;567
11.7.7;19.7 References;568
11.8;Chapter 20. A parametric constant-life model for prediction of the fatigue lives of fibre-reinforced plastics;569
11.8.1;20.1 Introduction;569
11.8.2;20.2 The nature of fatigue processes in composites;569
11.8.3;20.3 Cracks in composites;570
11.8.4;20.4 Life prediction: the alternatives;571
11.8.5;20.5 A parametric constant-life model for life prediction;573
11.8.6;20.6 Conclusions;588
11.8.7;20.7 Acknowledgements;590
11.8.8;20.8 References;590
11.9;Chapter 21. A neural-network approach to fatigue-life prediction;592
11.9.1;21.1 Introduction;592
11.9.2;21.2 Background;593
11.9.3;21.3 Biological neural networks;593
11.9.4;21.4 Multi-variate non-linear mappings;593
11.9.5;21.5 Artificial neural network models;596
11.9.6;21.6 The use of artificial neural networks in practice;600
11.9.7;21.7 Application of artificial neural networks to the analysis of fatigue life data;602
11.9.8;21.8 Optimum artificial neural network architecture;603
11.9.9;21.9 Selection of inputs for training the artificial neural network;603
11.9.10;21.10 Constant stress amplitude fatigue;603
11.9.11;21.11 New material application;604
11.9.12;21.12 Block-loading data analysis;605
11.9.13;21.13 Suggested procedure for applying neural networks to fatigue life data;606
11.9.14;21.14 Comparison with other methods;608
11.9.15;21.15 Future trends;611
11.9.16;21.16 Acknowledgements;611
11.9.17;21.17 References;611
12;Part V: Fatigue in practical situations;614
12.1;Chapter 22. The fatigue performance of composite structural components;616
12.1.1;22.1 Introduction;616
12.1.2;22.2 General approach;616
12.1.3;22.3 Damage growth and life prediction;618
12.1.4;22.4 An approach to full-scale testing;621
12.1.5;22.5 Reliability;622
12.1.6;22.6 Applications;622
12.1.7;22.7 Conclusions;639
12.1.8;22.8 References;639
12.1.9;22.9 Appendix;642
12.1.10;22.10 Nomenclature;643
12.2;Chapter 23. Fatigue of joints in composite structures;644
12.2.1;23.1 Introduction;644
12.2.2;23.2 Composite joints;644
12.2.3;23.3 Fatigue in adhesive joints;648
12.2.4;23.4 Fatigue in bolted joints;656
12.2.5;23.5 Outlook;662
12.2.6;23.6 Summary;663
12.2.7;23.7 References;664
12.3;Chapter 24. Fatigue in filament-wound structures;667
12.3.1;24.1 Introduction;667
12.3.2;24.2 Brief overview of literature on pipe behaviour;668
12.3.3;24.3 Breadboard fixtures;669
12.3.4;24.4 Fatigue behaviour of bi-directional [+55/–55] glass-fibre/epoxy-matrix filament-wound pipes;671
12.3.5;24.5 Conclusions;678
12.3.6;24.6 References;678
12.4;Chapter 25. Fatigue of FRP composites in civil engineering applications;681
12.4.1;25.1 Introduction;681
12.4.2;25.2 Composite material applications in civil engineering;681
12.4.3;25.3 Typical fatigue loadings in civil engineering structures;690
12.4.4;25.4 Fatigue behaviour of composite structures and components;694
12.4.5;25.5 Design and analysis of structures for fatigue;700
12.4.6;25.6 Case study: FRP road deck fatigue performance (TRL test programme on ACCS Roadway Panel);702
12.4.7;25.7 Operational aspects;707
12.4.8;25.8 Concluding remarks;708
12.4.9;25.9 References;708
12.5;Chapter 26. Fatigue in aerospace applications;709
12.5.1;26.1 Introduction;709
12.5.2;26.2 Overview of fatigue performance of aerospace materials;711
12.5.3;26.3 Fatigue life prediction;715
12.5.4;26.4 Damage mechanisms;718
12.5.5;26.5 Airframe structural elements;721
12.5.6;26.6 Conclusions;729
12.5.7;26.8 Acknowledgements;730
12.5.8;26.9 References;730
12.6;Chapter 27. Fatigue and durability of marine composites;732
12.6.1;27.1 Introduction;732
12.6.2;27.2 Specific nature of the marine environment;734
12.6.3;27.3 Marine composites;738
12.6.4;27.4 Durability of marine laminates;740
12.6.5;27.5 Durability of sandwich materials;742
12.6.6;27.6 Assemblies;743
12.6.7;27.7 Slamming impact response;745
12.6.8;27.8 Cylinders for underwater applications;747
12.6.9;27.9 Future directions;750
12.6.10;27.10 References;750
13;Index;753


Contributor contact details
Chapter 1 & 20 Professor Bryan Harris, b.harris@bath.ac.uk     Materials Research Centre, Department of Engineering and Applied Science, University of Bath, Bath, Somerset, UK, Tel: + 44 (0) 1225 826447 Chapter 2 Dr Graham D. Sims, graham.sims@npl.co.uk     National Physical Laboratory Materials Centre, Teddington, Middlesex, TW11 0LW, UK, Tel: + 44 (0) 20 8943 6564, Fax: + 44 (0) 20 8614 0433 Chapter 3 Professor Mahmood M. Shokrieh, shokrieh@iust.ac.ir     Mechanical Engineering Department, Iran University of Science and Technology, Narmak, Tehran 16844, Iran, Tel.: + 98 911 288 7925 Fax: + 98 21 749 1206 Professor L.B. Lessard, larry.lessard@mcgill.ca     Department of Mechanical Engineering, McGill University, 817 Sherbrooke St West, Montreal, Quebec, Canada, H3A 2 K6, Tel: + 1 514 398-6305,0020Fax: + 1 514 398-6305 Chapter 4 Professor F.R. Jones, f.r.jones@sheffield.ac.uk     Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Sheffield, S1 3JD, UK, Tel: + 44 (0) 114 222 5477 Chapter 5 Professor C. Galiotis12, f.r.jones@sheffield.ac.uk Dr C. Koimtzoglou1, ckoim@iceht.forth.gr 1Institute of Chemical Engineering and High Temperature Processes, Foundation for Research & Technology – Hellas, Stadiou Street, Platani PO Box 1414, GR-265 04, Patras, Greece 2Materials Science Department, School of Natural Science, University of Patras GR-265 04, Patras, Greece, Tel: +30 610-965 255, Fax: +30 610-965 223 Chapter 6 Dr Rod Martin, rmartin@merl-ltd.co.uk     Materials Engineering Research Laboratory Ltd, Tamworth Road, Hertford, SG13 7DG, UK, Tel: + 44 (0) 1992 510803 Fax: + 44 (0) 1992 586439 Chapter 7 Dr G.F. Fernando, G.F.Fernando@rmcs.cranfield.ac.uk     Engineering Systems Department, Cranfield University, RMCS, Shrivenham, Swindon, SN6 8LA, UK, Tel: + 44 (0) 1793 785146 Dr F.A.A. Al-Khodairi     Polymer Research Technology, Saudi Basic Industries Corporation, PO Box 42503, Riyadh 11551, Saudi Arabia Chapter 8 Professor A.P. Mouritz, adrian.mouritz@rmit.edu.au     School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, GPO Box 2476 V, Melbourne Victoria 3001, Australia, Tel: + 61 3 9925 8069, Fax: + 61 3 9925 8099 Chapter 9 Professor G. Caprino, caprino@unina.it     Department of Materials and Production Engineering, University of Naples “Federico II”, Piazzale Tecchio 80, 80125, Napoli, Italy Chapter 10 Professor N.K. Naik, nknaik@aero.iitb.ac.in     Aerospace Engineering Department, Indian Institute of Technology – Bombay, Powai, Mumbai - 400 076, India, Tel: + 91 22 2576 7114 Fax: + 91 22 2572 2602 Chapter 11 Dr E.K. Gamstedt, kristofer@hallf.kth.se     Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden, Tel: + 46 8 790 7553 Fax: + 46 8 411 2418 Professor L.A. Berglund, blund@kth.se     Department of Aeronautical and Vehicle Engineering, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden, Tel: + 46 8 790 8118 Fax: + 46 8 796 6080 Chapter 12 Dr Martin P. Ansell, m.p.ansell@bath.ac.uk     Department of Engineering and Applied Science, University of Bath, Bath, BA2 7AY, UK, Tel: + 44 (0) 1225 386432, Fax: + 44 (0) 1225 386098 Chapter 13 Dr P.W.R. Beaumont, pwrb@eng.cam.ac.uk     Cambridge University Engineering Department, Trumpington Street, Cambridge, UK, Tel: + 44 (0) 1223 332600, Fax: + 44 (0) 1223 332662 Chapter 14 Professor K. Reifsnider, mrl@vt.edu     Alexander Giacco Professor of Engineering Science and Mechanics and Professor S. Case, 120Patton Hall, Virginia Tech, Blacksburg, VA 24061-0219, USA Chapter 15 Professor P. Ladevèze, ladeveze@lmt.ens-cachan.fr; Dr G. Lubineau     ENS Cachan, CNRS, Université Paris 6, 61 avenue du Président Wilson, 94235 Cachan Cedex, France, Tel: + 33 (0) 1 47 40 22 41, Fax: + 33 (0) 1 47 40 27 85 Chapter 16 Professor Lin Ye; Professor Yiu-Wing Mai, mai@aeromech.usyd.edu.au     Centre for Advanced Materials Technology (CAMT), University of Sydney, Sydney, NSW 2006, Australia, Tel: + 61 2 9351 2290/2341, Fax: + 61 2 9351 3760 Dr Xiaoxue Diao, xiaoxue.diao@ps.ge.com     PreciCad Inc., 350 Boulevard Charest Est, 1st floor, Quebec, G1K 3H4, Canada, Tel: 514 485 4292, Fax: 514 485 4234 Chapter 17 Professor C. Soutis, c.soutis@sheffield.ac.uk     Head of Aerospace Engineering, University of Sheffield, Faculty of Engineering, Mappin Street, Sheffield, S1 3JD, UK, Tel: + 44 (0) 114 2227811 Fax: + 44 (0) 114 2227890 Dr M. Kashtalyan, m.kashtalyan@abdn.ac.uk     School of Engineering and Physical Sciences, University of Aberdeen Fraser Noble Building, King’s College, Aberdeen, AB24 3UE, UK, Tel: + 44 (0) 1224 272519, Fax: + 44 (0) 1224 272519 Chapter 18 Professor T.P. Philippidis, philippidis@mech.upatras.gr; Dr A.P. Vassilopoulos, vassilopoulos@mech.upatras.gr     Section of Applied Mechanics, Department of Mechanical Engineering and Aeronautics, University of Patras, PO Box 1401, University Campus 265 04, Rion, Greece, Tel/Fax: + 30 261 0997235 Chapter 19 Dr K.E. Fu; Professor L.J. Lee, ljlee@mail.iaa.ncku.edu.tw     Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan 70101, ROC Chapter 21 Dr J.A. Lee; Professor D.P. Almond, d.p.almond@bath.ac.uk     Department of Engineering and Applied Science; University of Bath; Bath; BA2 7AY; UK Chapter 22 Professor M.D. Gilchrist, michael.gilchrist@ucd.ie     Department of Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland, Tel: + 353 1 7161884 Fax: + 353 1 2830534 Chapter 23 Dr J. Schön, snj@foi.se     Swedish Defence Research Agency FOI, SE-172 90 Stockholm, Sweden, Tel: + 46 8 55503595 Fax: + 46 8 55503869 Dr R. Starikov, Romsta@foi.se     Swedish Defence Research Agency FOI, FFA, SE-172 90 Stockholm Sweden Chapter 24 Professor D. Perreux, dominique.perreux@univ-fcomte.fr; Dr Frédéric Thiébaud     Laboratoire de Mécanique Appliquée RC, 24 rue de l’Epitaphe, 25000 Besangon, France, Tel: + 33 (0) 3 81 66 60 12 Fax: + 33 (0) 3 81 66 67 00 Chapter 25 Dr John M.C. Cadei, john.cadei@fabermaunsell.com     FaberMaunsell Ltd, 160 Croydon Road, Beckenham, Kent, BR3 4DE, UK, Tel: + 44 (0) 870 905 0906 Fax: + 44 (0) 20 8663 6723 Chapter...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.