E-Book, Englisch, 768 Seiten
Reihe: Woodhead Publishing Series in Composites Science and Engineering
Harris Fatigue in Composites
1. Auflage 2003
ISBN: 978-1-85573-857-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics
E-Book, Englisch, 768 Seiten
Reihe: Woodhead Publishing Series in Composites Science and Engineering
ISBN: 978-1-85573-857-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
This major handbook is the first authoritative survey of current knowledge of fatigue behaviour of composites. It deals in detail with a wide range of problems met by designers in the automotive, marine and structural engineering industries. Compiled from the contributions of some of the best-known researchers in the field, it provides an invaluable, practical and encyclopaedic handbook covering recent developments. - Comprehensively discusses the problems of fatigue in composites met by designers in the aerospace, marine and structural engineering industries - Provides a general introduction on fatigue in composites before reviewing current research on micromechanical aspects - Analyses various types of composites with respect to fatigue behaviour and testing and provides in-depth coverage of life-prediction models for constant variable stresses
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover ;1
2;Fatigue in Composites: Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics;4
3;Copyright Page
;5
4;Table of Contents;6
5;Preface;14
6;Acknowledgements;17
7;Contributor contact details;18
8;Part I: Introduction to fatigue in composites;24
8.1;Chapter 1. A historical review of the fatigue behaviour of fibre-reinforced plastics;26
8.1.1;1.1 Introduction;26
8.1.2;1.2 Fatigue phenomena in fibre composites;27
8.1.3;1.3 Concluding comments;53
8.1.4;1.4 Bibliography;54
8.1.5;1.5 References;54
8.2;Chapter 2. Fatigue test methods, problems and standards;59
8.2.1;2.1 Introduction;59
8.2.2;2.2 Fatigue data requirements;59
8.2.3;2.3 Fatigue testing requirements;61
8.2.4;2.4 Fatigue test equipment;62
8.2.5;2.5 Artefacts in fatigue testing;65
8.2.6;2.6 Standardized test methods;75
8.2.7;2.7 Precision data;79
8.2.8;2.8 Data presentation;81
8.2.9;2.9 Concluding comments;82
8.2.10;2.10 Future trends;84
8.2.11;2.11 Acknowledgements;84
8.2.12;2.12 References;85
8.3;Chapter 3. Fatigue under multiaxial stress systems;86
8.3.1;3.1 Introduction;86
8.3.2;3.2 Fatigue failure criteria;86
8.3.3;3.3 Material properties degradation;91
8.3.4;3.4 Progressive fatigue damage modelling;101
8.3.5;3.5 Material characterization;103
8.3.6;3.6 Experimental evaluation of the model;116
8.3.7;3.7 Conclusions;131
8.3.8;3.8 References;132
9;Part II: Micromechanical aspects of fatigue in composites;138
9.1;Chapter 4. The effects of aggressive environments on long-term behaviour;140
9.1.1;4.1 Introduction;140
9.1.2;4.2 Aqueous environments;140
9.1.3;4.3 Moisture sensitivity of resins;143
9.1.4;4.4 Thermal spiking;146
9.1.5;4.5 Thermomechanical response of matrix resins;146
9.1.6;4.6 Effect of moisture on composite performance;149
9.1.7;4.7 Fibre-dominated properties;152
9.1.8;4.8 Role of the matrix and interface;158
9.1.9;4.9 Environmental stress-corrosion cracking (ESCC) of GRP;160
9.1.10;4.10 Designing for stress-corrosion resistance;165
9.1.11;4.11 Non-aqueous environments;166
9.1.12;4.12 Conclusions;168
9.1.13;4.13 References;168
9.2;Chapter 5. The effect of the interface on the fatigue performance of fibre composites;170
9.2.1;5.1 Introduction;170
9.2.2;5.2 Effect of interface parameters on fatigue performance;170
9.2.3;5.3 Effect of other parameters that indirectly affect the interface on fatigue performance;178
9.2.4;5.4 Effect of fatigue loading on interface;186
9.2.5;5.5 Conclusions;191
9.2.6;5.6 References;193
9.3;Chapter 6. Delamination fatigue;196
9.3.1;6.1 Introduction;196
9.3.2;6.2 The interlaminar fracture mechanics approach for fatigue;198
9.3.3;6.3 Characterizing delamination in fatigue;200
9.3.4;6.4 Modelling a delamination;206
9.3.5;6.5 Using fracture mechanics analysis as a design tool;207
9.3.6;6.6 Structural integrity prediction;210
9.3.7;6.7 References;210
9.4;Chapter 7. The fatigue of hybrid composites;212
9.4.1;7.1 Introduction;212
9.4.2;7.2 Comparison of fatigue data;218
9.4.3;7.3 Materials and experimental procedures;221
9.4.4;7.4 Results and discussion;225
9.4.5;7.5 Fractography;256
9.4.6;7.6 Conclusions;259
9.4.7;7.7 Acknowledgements;260
9.4.8;7.8 References;261
9.5;Chapter 8. Non-destructive evaluation of damage accumulation;265
9.5.1;8.1 Introduction;265
9.5.2;8.2 Acoustic NDE techniques;266
9.5.3;8.3 Acoustic emission;277
9.5.4;8.4 Radiography;279
9.5.5;8.5 Thermographic NDE methods;282
9.5.6;8.6 Eddy currents;282
9.5.7;8.7 Moiré interferometry;282
9.5.8;8.8 Summary and concluding remarks;284
9.5.9;8.9 Acknowledgements;285
9.5.10;8.10 Information sources;285
9.5.11;8.11 References;285
10;Part III: Fatigue in different types of composites;290
10.1;Chapter 9. Short-fibre thermoset composites;292
10.1.1;9.1 Introduction;292
10.1.2;9.2 Structure and composition of short-fibre thermoset composites;293
10.1.3;9.3 Static behaviour;293
10.1.4;9.4 Fatigue behaviour;301
10.1.5;9.5 Conclusions;315
10.1.6;9.6 References;315
10.2;Chapter 10. Woven-fibre thermoset composites;319
10.2.1;10.1 Introduction;319
10.2.2;10.2 Fatigue performance of laminated composites;321
10.2.3;10.3 Woven-fabric laminated composites;322
10.2.4;10.4 Fatigue testing;326
10.2.5;10.5 Fatigue damage in woven-fabric composites;327
10.2.6;10.6 Fatigue loading: stiffness, strength and life;331
10.2.7;10.7 Recent studies of the fatigue behaviour of WF composites;333
10.2.8;10.8 Future trends;333
10.2.9;10.9 Nomenclature;334
10.2.10;10.10 References;334
10.3;Chapter 11. Fatigue of thermoplastic composites;337
10.3.1;11.1 Introduction;337
10.3.2;11.2 Thermoplastics;339
10.3.3;11.3 Continuous-fibre composites;344
10.3.4;11.4 Short-fibre composites;354
10.3.5;11.5 Future of thermoplastic composites;357
10.3.6;11.6 References;358
10.4;Chapter 12. Fatigue of wood and wood panel products;362
10.4.1;12.1 Introduction;362
10.4.2;12.2 The structure and properties of wood and timber;362
10.4.3;12.3 Fatigue life of wood and panel products;366
10.4.4;12.4 Dynamic property changes in fatigue of wood and panel products;372
10.4.5;12.5 Fatigue damage development in wood and panel products;379
10.4.6;12.6 Fatigue in timber joints;380
10.4.7;12.7 Fatigue of natural fibre composites;381
10.4.8;12.8 Conclusions;381
10.4.9;12.9 Acknowledgements;381
10.4.10;12.10 References;382
11;Part IV: Life-prediction methods for constant stress and variable stress;386
11.1;Chapter 13. Physical modelling of damage development in structural composite materials under stress;388
11.1.1;13.1 Introduction;388
11.1.2;13.2 A framework for understanding damage development;388
11.1.3;13.3 A question of design route;390
11.1.4;13.4 A question of physical modelling;392
11.1.5;13.5 A question of fatigue;395
11.1.6;13.6 Physical modelling of fatigue damage development;399
11.1.7;13.7 Physical modelling of fatigue damage development at stress concentrators;419
11.1.8;13.8 Computer implementation;431
11.1.9;13.9 Summary and final remarks;432
11.1.10;13.10 Acknowledgements;433
11.1.11;13.11 References;433
11.2;Chapter 14. Micromechanical models;436
11.2.1;14.1 Introduction;436
11.2.2;14.2 Damage accumulation in composite materials;437
11.2.3;14.3 Changes in stiffness;439
11.2.4;14.4 Changes in local material strength;440
11.2.5;14.5 Strength: an internal state variable and damage metric;442
11.2.6;14.6 Strength of a composite material: ‘Critical element’ concepts;442
11.2.7;14.7 Non-uniform stress states: characteristic material dimensions;444
11.2.8;14.8 Strength evolution;444
11.2.9;14.9 Applications;449
11.2.10;14.10 Conclusions;452
11.2.11;14.11 Acknowledgements;453
11.2.12;14.12 References;453
11.3;Chapter 15. A computational mesodamage model for life prediction for laminates;455
11.3.1;15.1 Introduction;455
11.3.2;15.2 The damage scenarios on the micro structural scale;455
11.3.3;15.3 The 3D damage model for laminates according to scenarios 3 and 4;456
11.3.4;15.4 The ‘micro’ modelling of laminate composite for scenarios 1 and 2;457
11.3.5;15.5 Mesomodel of the laminated composite;459
11.3.6;15.6 Comparison with experiments for [0n/90m]s;460
11.3.7;15.7 Perspectives;463
11.3.8;15.8 References;464
11.4;Chapter 16. A statistical study of the fatigue performance of fibre-reinforced composite laminates;465
11.4.1;16.1 Introduction;465
11.4.2;16.2 Fatigue and methodology;466
11.4.3;16.3 Statistical model;470
11.4.4;16.4 Stress redistribution function;472
11.4.5;16.5 Evaluation of fatigue performance of composite laminates;476
11.4.6;16.6 Concluding remarks;486
11.4.7;16.7 Acknowledgements;491
11.4.8;16.8 References;491
11.5;Chapter 17. Analysis of matrix crack-induced delamination in composite laminates under static and fatigue loading;493
11.5.1;17.1 Introduction;493
11.5.2;17.2 Stiffness properties of cracked laminates with delaminations;494
11.5.3;17.3 Delamination onset and growth prediction;509
11.5.4;17.4 Conclusions;519
11.5.5;17.5 Acknowledgements;521
11.5.6;17.6 References;522
11.5.7;17.7 Appendices;523
11.6;Chapter 18. Fatigue strength of composites under variable plane stress;527
11.6.1;18.1 Introduction;527
11.6.2;18.2 Life prediction under combined stress: theoretical considerations;528
11.6.3;18.3 Experimental and property evaluation;532
11.6.4;18.4 Verification of life prediction methodology;539
11.6.5;18.5 Structural application example: Inboard part of a rotor blade;543
11.6.6;18.6 Concluding remarks;544
11.6.7;18.7 References;546
11.7;Chapter 19. Life prediction under service loading spectra;549
11.7.1;19.1 Introduction;549
11.7.2;19.2 Stiffness degradation under block-type loading spectrum;551
11.7.3;19.3 Statistical distribution of fatigue life;554
11.7.4;19.4 Experimental program;555
11.7.5;19.5 Experimental verification;556
11.7.6;19.6 Conclusions;567
11.7.7;19.7 References;568
11.8;Chapter 20. A parametric constant-life model for prediction of the fatigue lives of fibre-reinforced plastics;569
11.8.1;20.1 Introduction;569
11.8.2;20.2 The nature of fatigue processes in composites;569
11.8.3;20.3 Cracks in composites;570
11.8.4;20.4 Life prediction: the alternatives;571
11.8.5;20.5 A parametric constant-life model for life prediction;573
11.8.6;20.6 Conclusions;588
11.8.7;20.7 Acknowledgements;590
11.8.8;20.8 References;590
11.9;Chapter 21. A neural-network approach to fatigue-life prediction;592
11.9.1;21.1 Introduction;592
11.9.2;21.2 Background;593
11.9.3;21.3 Biological neural networks;593
11.9.4;21.4 Multi-variate non-linear mappings;593
11.9.5;21.5 Artificial neural network models;596
11.9.6;21.6 The use of artificial neural networks in practice;600
11.9.7;21.7 Application of artificial neural networks to the analysis of fatigue life data;602
11.9.8;21.8 Optimum artificial neural network architecture;603
11.9.9;21.9 Selection of inputs for training the artificial neural network;603
11.9.10;21.10 Constant stress amplitude fatigue;603
11.9.11;21.11 New material application;604
11.9.12;21.12 Block-loading data analysis;605
11.9.13;21.13 Suggested procedure for applying neural networks to fatigue life data;606
11.9.14;21.14 Comparison with other methods;608
11.9.15;21.15 Future trends;611
11.9.16;21.16 Acknowledgements;611
11.9.17;21.17 References;611
12;Part V: Fatigue in practical situations;614
12.1;Chapter 22. The fatigue performance of composite structural components;616
12.1.1;22.1 Introduction;616
12.1.2;22.2 General approach;616
12.1.3;22.3 Damage growth and life prediction;618
12.1.4;22.4 An approach to full-scale testing;621
12.1.5;22.5 Reliability;622
12.1.6;22.6 Applications;622
12.1.7;22.7 Conclusions;639
12.1.8;22.8 References;639
12.1.9;22.9 Appendix;642
12.1.10;22.10 Nomenclature;643
12.2;Chapter 23. Fatigue of joints in composite structures;644
12.2.1;23.1 Introduction;644
12.2.2;23.2 Composite joints;644
12.2.3;23.3 Fatigue in adhesive joints;648
12.2.4;23.4 Fatigue in bolted joints;656
12.2.5;23.5 Outlook;662
12.2.6;23.6 Summary;663
12.2.7;23.7 References;664
12.3;Chapter 24. Fatigue in filament-wound structures;667
12.3.1;24.1 Introduction;667
12.3.2;24.2 Brief overview of literature on pipe behaviour;668
12.3.3;24.3 Breadboard fixtures;669
12.3.4;24.4 Fatigue behaviour of bi-directional [+55/–55] glass-fibre/epoxy-matrix filament-wound pipes;671
12.3.5;24.5 Conclusions;678
12.3.6;24.6 References;678
12.4;Chapter 25. Fatigue of FRP composites in civil engineering applications;681
12.4.1;25.1 Introduction;681
12.4.2;25.2 Composite material applications in civil engineering;681
12.4.3;25.3 Typical fatigue loadings in civil engineering structures;690
12.4.4;25.4 Fatigue behaviour of composite structures and components;694
12.4.5;25.5 Design and analysis of structures for fatigue;700
12.4.6;25.6 Case study: FRP road deck fatigue performance (TRL test programme on ACCS Roadway Panel);702
12.4.7;25.7 Operational aspects;707
12.4.8;25.8 Concluding remarks;708
12.4.9;25.9 References;708
12.5;Chapter 26. Fatigue in aerospace applications;709
12.5.1;26.1 Introduction;709
12.5.2;26.2 Overview of fatigue performance of aerospace materials;711
12.5.3;26.3 Fatigue life prediction;715
12.5.4;26.4 Damage mechanisms;718
12.5.5;26.5 Airframe structural elements;721
12.5.6;26.6 Conclusions;729
12.5.7;26.8 Acknowledgements;730
12.5.8;26.9 References;730
12.6;Chapter 27. Fatigue and durability of marine composites;732
12.6.1;27.1 Introduction;732
12.6.2;27.2 Specific nature of the marine environment;734
12.6.3;27.3 Marine composites;738
12.6.4;27.4 Durability of marine laminates;740
12.6.5;27.5 Durability of sandwich materials;742
12.6.6;27.6 Assemblies;743
12.6.7;27.7 Slamming impact response;745
12.6.8;27.8 Cylinders for underwater applications;747
12.6.9;27.9 Future directions;750
12.6.10;27.10 References;750
13;Index;753
Contributor contact details
Chapter 1 & 20 Professor Bryan Harris, b.harris@bath.ac.uk Materials Research Centre, Department of Engineering and Applied Science, University of Bath, Bath, Somerset, UK, Tel: + 44 (0) 1225 826447 Chapter 2 Dr Graham D. Sims, graham.sims@npl.co.uk National Physical Laboratory Materials Centre, Teddington, Middlesex, TW11 0LW, UK, Tel: + 44 (0) 20 8943 6564, Fax: + 44 (0) 20 8614 0433 Chapter 3 Professor Mahmood M. Shokrieh, shokrieh@iust.ac.ir Mechanical Engineering Department, Iran University of Science and Technology, Narmak, Tehran 16844, Iran, Tel.: + 98 911 288 7925 Fax: + 98 21 749 1206 Professor L.B. Lessard, larry.lessard@mcgill.ca Department of Mechanical Engineering, McGill University, 817 Sherbrooke St West, Montreal, Quebec, Canada, H3A 2 K6, Tel: + 1 514 398-6305,0020Fax: + 1 514 398-6305 Chapter 4 Professor F.R. Jones, f.r.jones@sheffield.ac.uk Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Sheffield, S1 3JD, UK, Tel: + 44 (0) 114 222 5477 Chapter 5 Professor C. Galiotis12, f.r.jones@sheffield.ac.uk Dr C. Koimtzoglou1, ckoim@iceht.forth.gr 1Institute of Chemical Engineering and High Temperature Processes, Foundation for Research & Technology – Hellas, Stadiou Street, Platani PO Box 1414, GR-265 04, Patras, Greece 2Materials Science Department, School of Natural Science, University of Patras GR-265 04, Patras, Greece, Tel: +30 610-965 255, Fax: +30 610-965 223 Chapter 6 Dr Rod Martin, rmartin@merl-ltd.co.uk Materials Engineering Research Laboratory Ltd, Tamworth Road, Hertford, SG13 7DG, UK, Tel: + 44 (0) 1992 510803 Fax: + 44 (0) 1992 586439 Chapter 7 Dr G.F. Fernando, G.F.Fernando@rmcs.cranfield.ac.uk Engineering Systems Department, Cranfield University, RMCS, Shrivenham, Swindon, SN6 8LA, UK, Tel: + 44 (0) 1793 785146 Dr F.A.A. Al-Khodairi Polymer Research Technology, Saudi Basic Industries Corporation, PO Box 42503, Riyadh 11551, Saudi Arabia Chapter 8 Professor A.P. Mouritz, adrian.mouritz@rmit.edu.au School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, GPO Box 2476 V, Melbourne Victoria 3001, Australia, Tel: + 61 3 9925 8069, Fax: + 61 3 9925 8099 Chapter 9 Professor G. Caprino, caprino@unina.it Department of Materials and Production Engineering, University of Naples “Federico II”, Piazzale Tecchio 80, 80125, Napoli, Italy Chapter 10 Professor N.K. Naik, nknaik@aero.iitb.ac.in Aerospace Engineering Department, Indian Institute of Technology – Bombay, Powai, Mumbai - 400 076, India, Tel: + 91 22 2576 7114 Fax: + 91 22 2572 2602 Chapter 11 Dr E.K. Gamstedt, kristofer@hallf.kth.se Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden, Tel: + 46 8 790 7553 Fax: + 46 8 411 2418 Professor L.A. Berglund, blund@kth.se Department of Aeronautical and Vehicle Engineering, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden, Tel: + 46 8 790 8118 Fax: + 46 8 796 6080 Chapter 12 Dr Martin P. Ansell, m.p.ansell@bath.ac.uk Department of Engineering and Applied Science, University of Bath, Bath, BA2 7AY, UK, Tel: + 44 (0) 1225 386432, Fax: + 44 (0) 1225 386098 Chapter 13 Dr P.W.R. Beaumont, pwrb@eng.cam.ac.uk Cambridge University Engineering Department, Trumpington Street, Cambridge, UK, Tel: + 44 (0) 1223 332600, Fax: + 44 (0) 1223 332662 Chapter 14 Professor K. Reifsnider, mrl@vt.edu Alexander Giacco Professor of Engineering Science and Mechanics and Professor S. Case, 120Patton Hall, Virginia Tech, Blacksburg, VA 24061-0219, USA Chapter 15 Professor P. Ladevèze, ladeveze@lmt.ens-cachan.fr; Dr G. Lubineau ENS Cachan, CNRS, Université Paris 6, 61 avenue du Président Wilson, 94235 Cachan Cedex, France, Tel: + 33 (0) 1 47 40 22 41, Fax: + 33 (0) 1 47 40 27 85 Chapter 16 Professor Lin Ye; Professor Yiu-Wing Mai, mai@aeromech.usyd.edu.au Centre for Advanced Materials Technology (CAMT), University of Sydney, Sydney, NSW 2006, Australia, Tel: + 61 2 9351 2290/2341, Fax: + 61 2 9351 3760 Dr Xiaoxue Diao, xiaoxue.diao@ps.ge.com PreciCad Inc., 350 Boulevard Charest Est, 1st floor, Quebec, G1K 3H4, Canada, Tel: 514 485 4292, Fax: 514 485 4234 Chapter 17 Professor C. Soutis, c.soutis@sheffield.ac.uk Head of Aerospace Engineering, University of Sheffield, Faculty of Engineering, Mappin Street, Sheffield, S1 3JD, UK, Tel: + 44 (0) 114 2227811 Fax: + 44 (0) 114 2227890 Dr M. Kashtalyan, m.kashtalyan@abdn.ac.uk School of Engineering and Physical Sciences, University of Aberdeen Fraser Noble Building, King’s College, Aberdeen, AB24 3UE, UK, Tel: + 44 (0) 1224 272519, Fax: + 44 (0) 1224 272519 Chapter 18 Professor T.P. Philippidis, philippidis@mech.upatras.gr; Dr A.P. Vassilopoulos, vassilopoulos@mech.upatras.gr Section of Applied Mechanics, Department of Mechanical Engineering and Aeronautics, University of Patras, PO Box 1401, University Campus 265 04, Rion, Greece, Tel/Fax: + 30 261 0997235 Chapter 19 Dr K.E. Fu; Professor L.J. Lee, ljlee@mail.iaa.ncku.edu.tw Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan 70101, ROC Chapter 21 Dr J.A. Lee; Professor D.P. Almond, d.p.almond@bath.ac.uk Department of Engineering and Applied Science; University of Bath; Bath; BA2 7AY; UK Chapter 22 Professor M.D. Gilchrist, michael.gilchrist@ucd.ie Department of Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland, Tel: + 353 1 7161884 Fax: + 353 1 2830534 Chapter 23 Dr J. Schön, snj@foi.se Swedish Defence Research Agency FOI, SE-172 90 Stockholm, Sweden, Tel: + 46 8 55503595 Fax: + 46 8 55503869 Dr R. Starikov, Romsta@foi.se Swedish Defence Research Agency FOI, FFA, SE-172 90 Stockholm Sweden Chapter 24 Professor D. Perreux, dominique.perreux@univ-fcomte.fr; Dr Frédéric Thiébaud Laboratoire de Mécanique Appliquée RC, 24 rue de l’Epitaphe, 25000 Besangon, France, Tel: + 33 (0) 3 81 66 60 12 Fax: + 33 (0) 3 81 66 67 00 Chapter 25 Dr John M.C. Cadei, john.cadei@fabermaunsell.com FaberMaunsell Ltd, 160 Croydon Road, Beckenham, Kent, BR3 4DE, UK, Tel: + 44 (0) 870 905 0906 Fax: + 44 (0) 20 8663 6723 Chapter...