Buch, Englisch, 263 Seiten, Previously published in hardcover, Format (B × H): 156 mm x 234 mm, Gewicht: 430 g
Reihe: Advanced Texts in Physics
Parameter Estimation and Decisions
Buch, Englisch, 263 Seiten, Previously published in hardcover, Format (B × H): 156 mm x 234 mm, Gewicht: 430 g
Reihe: Advanced Texts in Physics
ISBN: 978-3-642-05577-5
Verlag: Springer
Filling a longstanding need in the physical sciences, Bayesian Inference offers the first basic introduction for advanced undergraduates and graduates in the physical sciences. This text and reference generalizes Gaussian error intervals to situations in which the data follow distributions other than Gaussian. This usually occurs in frontier science because the observed parameter is barely above the background or the histogram of multiparametric data contains many empty bins. In this case, the determination of the validity of a theory cannot be based on the chi-squared-criterion. In addition to the solutions of practical problems, this approach provides an epistemic insight: the logic of quantum mechanics is obtained as the logic of unbiased inference from counting data. Requiring no knowledge of quantum mechanics, the text is written on introductory level, with many examples and exercises, for physicists planning to, or working in, fields such as medical physics, nuclear physics, quantum mechanics, and chaos.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Quantenphysik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
Weitere Infos & Material
1 Knowledge and Logic.- 2 Bayes’ Theorem.- 3 Probable and Improbable Data.- 4 Description of Distributions I: Real x.- 5 Description of Distributions II: Natural x.- 6 Form Invariance I: Real x.- 7 Examples of Invariant Measures.- 8 A Linear Representation of Form Invariance.- 9 Beyond Form Invariance: The Geometric Prior.- 10 Inferring the Mean or Standard Deviation.- 11 Form Invariance II: Natural x.- 12 Independence of Parameters.- 13 The Art of Fitting I: Real x.- 14 Judging a Fit I: Real x.- 15 The Art of Fitting II: Natural x.- 16 Judging a Fit II: Natural x.- 17 Summary.- A Problems and Solutions.- A.1 Knowledge and Logic.- A.2 Bayes’ Theorem.- A.3 Probable and Improbable Data.- A.7 Examples of Invariant Measures.- A.8 A Linear Representation of Form Invariance.- A.9 Beyond Form Invariance: The Geometric Prior.- A.10 Inferring the Mean or Standard Deviation.- A.12 Independence of Parameters.- B.1 The Correlation Matrix.- B.2 Calculation of a Jacobian.- B.4 The Beta Function.- C.1 The Multinomial Theorem.- D Form Invariance I: Probability Densities.- D.1 The Invariant Measure of a Group.- E Beyond Form Invariance: The Geometric Prior.- E.1 The Definition of the Fisher Matrix.- E.2 Evaluation of a Determinant.- E.3 Evaluation of a Fisher Matrix.- E.4 The Fisher Matrix of the Multinomial Model.- F Inferring the Mean or Standard Deviation.- G.1 Destruction and Creation Operators.- G.2 Unitary Operators.- G.3 The Probability Amplitude of the Histogram.- G.4 Form Invariance of the Histogram.- G.5 Quasi-Events in the Histogram.- G.6 Form Invariance of the Binomial Model.- G.7 Conservation of the Number of Events.- G.8 Normalising the Posterior of the Binomial Model.- G.9 Lack of Form Invariance of the Multinomial Model.- H Independence of Parameters.- H.1 On theMeasure of a Factorising Group.- H.2 Marginal Distribution of the Posterior of the Multinomial Model.- H.3 A Minor Posterior of the Multinomial Model.- I.1 A Factorising Gaussian Model.- I.2 A Basis for Fourier Expansions.- J.2 The Deviation Between Two Distributions.- References.