Buch, Englisch, Band 661, 276 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 441 g
Cooperative Research at Siemens and MIT
Buch, Englisch, Band 661, 276 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 441 g
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-540-56483-6
Verlag: Springer Berlin Heidelberg
This volume includes some of the key research papers in the
area of machine learning produced at MIT and Siemens during
a three-year joint research effort. It includes papers on
many different styles of machine learning, organized into
three parts.
Part I, theory, includes three papers on theoretical aspects
of machine learning. The first two use the theory of
computational complexity to derive some fundamental limits
on what isefficiently learnable. The third provides an
efficient algorithm for identifying finite automata.
Part II, artificial intelligence and symbolic learning
methods, includes five papers giving an overview of the
state of the art and future developments in the field of
machine learning, a subfield of artificial intelligence
dealing with automated knowledge acquisition and knowledge
revision.
Part III, neural and collective computation, includes five
papers sampling the theoretical diversity and trends in the
vigorous new research field of neural networks: massively
parallel symbolic induction, task decomposition through
competition, phoneme discrimination, behavior-based
learning, and self-repairing neural networks.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Technische Informatik Hochleistungsrechnen, Supercomputer
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
Weitere Infos & Material
Strategic directions in machine learning.- Training a 3-node neural network is NP-complete.- Cryptographic limitations on learning Boolean formulae and finite automata.- Inference of finite automata using homing sequences.- Adaptive search by learning from incomplete explanations of failures.- Learning of rules for fault diagnosis in power supply networks.- Cross references are features.- The schema mechanism.- L-ATMS: A tight integration of EBL and the ATMS.- Massively parallel symbolic induction of protein structure/function relationships.- Task decomposition through competition in a modular connectionist architecture: The what and where vision tasks.- Phoneme discrimination using connectionist networks.- Behavior-based learning to control IR oven heating: Preliminary investigations.- Trellis codes, receptive fields, and fault tolerant, self-repairing neural networks.