Hanson / Rivest / Remmele | Machine Learning: From Theory to Applications | Buch | 978-3-540-56483-6 | sack.de

Buch, Englisch, Band 661, 276 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 441 g

Reihe: Lecture Notes in Computer Science

Hanson / Rivest / Remmele

Machine Learning: From Theory to Applications

Cooperative Research at Siemens and MIT
1993
ISBN: 978-3-540-56483-6
Verlag: Springer Berlin Heidelberg

Cooperative Research at Siemens and MIT

Buch, Englisch, Band 661, 276 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 441 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-56483-6
Verlag: Springer Berlin Heidelberg


This volume includes some of the key research papers in the
area of machine learning produced at MIT and Siemens during
a three-year joint research effort. It includes papers on
many different styles of machine learning, organized into
three parts.
Part I, theory, includes three papers on theoretical aspects
of machine learning. The first two use the theory of
computational complexity to derive some fundamental limits
on what isefficiently learnable. The third provides an
efficient algorithm for identifying finite automata.
Part II, artificial intelligence and symbolic learning
methods, includes five papers giving an overview of the
state of the art and future developments in the field of
machine learning, a subfield of artificial intelligence
dealing with automated knowledge acquisition and knowledge
revision.
Part III, neural and collective computation, includes five
papers sampling the theoretical diversity and trends in the
vigorous new research field of neural networks: massively
parallel symbolic induction, task decomposition through
competition, phoneme discrimination, behavior-based
learning, and self-repairing neural networks.

Hanson / Rivest / Remmele Machine Learning: From Theory to Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Strategic directions in machine learning.- Training a 3-node neural network is NP-complete.- Cryptographic limitations on learning Boolean formulae and finite automata.- Inference of finite automata using homing sequences.- Adaptive search by learning from incomplete explanations of failures.- Learning of rules for fault diagnosis in power supply networks.- Cross references are features.- The schema mechanism.- L-ATMS: A tight integration of EBL and the ATMS.- Massively parallel symbolic induction of protein structure/function relationships.- Task decomposition through competition in a modular connectionist architecture: The what and where vision tasks.- Phoneme discrimination using connectionist networks.- Behavior-based learning to control IR oven heating: Preliminary investigations.- Trellis codes, receptive fields, and fault tolerant, self-repairing neural networks.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.