E-Book, Englisch, 350 Seiten
Handel / Hamel Chemokines, Part B
1. Auflage 2009
ISBN: 978-0-08-095696-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 350 Seiten
ISBN: 978-0-08-095696-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
The understanding of chemokines, the proteins that control the migration of cells, and their receptors, is critical to the study of causes and therapies for a wide range of human diseases and infections, including certain types of cancer, inflammatory diseases, HIV, and malaria. This volume, focusing on chemokine structure and function, as well as signaling, and its companion volume (Methods in Enzymology volume 461, focusing on chemokines as potential targets for disease intervention) provide a comprehensive overview and time-tested protocols in this field, making it an essential reference for researchers in the area.
Along with its companion volume, provides a comprehensive overview of chemokine methods, specifically as related to potential disease therapy
Gathers tried, tested, and trusted methods and techniques from top players in chemokine research
Provides an essential reference for researchers in the field
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Methods in Enzymology: Chemokines, Part B ;4
3;Copyright Page;5
4;Contents;6
5;Contributors;12
6;Preface;16
7;Methods in Enzymology;18
8;Chapter 1: Chapter One Isolation, Identification, and Production of Posttranslationally Modified Chemokines;48
8.1;1. Introduction;49
8.2;2. Isolation and Stimulation of Peripheral Blood Mononuclear Cells (PBMC);50
8.3;3. Concentration of Isolated Proteins;51
8.4;4. Affinity Chromatography;52
8.5;5. Specific Sandwich Enzyme-Linked Immunosorbent Assay (ELISA);52
8.6;6. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE);53
8.7;7. Ion Exchange Chromatography;54
8.8;8. Reverse-Phase High-Pressure Liquid Chromatography (RP-HPLC);55
8.9;9. Ion Trap Mass Spectrometry;55
8.10;10. Edman Degradation;56
8.11;11. Total Protein Quantification Methods;57
8.12;12. Illustration: Isolation and Identification of Natural Posttranslationally Modified CXCL8 Isoforms;58
8.13;13. Solid-Phase Peptide Synthesis;59
8.14;14. Citrullination of Chemokines;66
8.15;15. Identification of Enzymes Generating the Natural Posttranslationally Modified Chemokines, as Exemplified by Aminopeptidase N(A;68
8.16;16. Comparison of the Heparin-Binding Properties of Chemokine Isoforms;69
8.17;Acknowledgments;70
8.18;References;70
9;Chapter 2: Chapter Two Homo- and Hetero-Oligomerization of Chemokines;76
9.1;1. Introduction;77
9.2;2. Methods to Detect and Quantify Oligomerization;80
9.3;3. Methods for Collecting Residue-Specific Information on Chemokine Oligomers;88
9.4;4. Conclusions;92
9.5;Acknowledgments;92
9.6;References;92
10;Chapter 3: Chapter Three Lymphotactin Structural Dynamics;96
10.1;1. Introduction;97
10.2;2. Production of Biologically Active Lymphotactin;99
10.3;3. Ltn Folds into Two Unrelated Native State Structures;101
10.4;4. Kinetics of Interconversion in the Ltn Conformational Equilibrium;102
10.5;5. Engineering Conformationally Restricted Lymphotactin Variants;105
10.6;6. Functional Analysis of Distinct Ltn Native State Conformations;106
10.7;7. GAG Binding Residues are Linked to the Ltn Conformational Equilibrium;110
10.8;8. Conclusions;112
10.9;References;113
11;Chapter 4: Chapter Four Interactions of Chemokines with Glycosaminoglycans;116
11.1;1. Introduction;117
11.2;2. Methods to Detect, Quantify, and Characterize Chemokine: Gag Interactions;125
11.3;3. Biophysical Methods;132
11.4;4. Summary;142
11.5;Acknowledgments;143
11.6;References;143
12;Chapter 5: Chapter Five Multiple Approaches to the Study of Chemokine Receptor Homo- and Heterodimerization;150
12.1;1. Introduction;151
12.2;2. Biochemical Techniques to Measure Chemokine Receptor Oligomerization;152
12.3;3. Resonance Energy Transfer (RET) Techniques;156
12.4;4. Sequential BRET-FRET (SRET) Technology;163
12.5;5. Conclusion;164
12.6;Acknowledgments;164
12.7;References;165
13;Chapter 6: Chapter Six Plasmon Resonance Methods in Membrane Protein Biology: Applications to GPCR Signaling;168
13.1;1. Introduction;169
13.2;2. Plasmon Spectroscopy;170
13.3;3. Sensor Construction and Sample Deposition;174
13.4;4. Lipid Bilayer Deposition;176
13.5;5. Spectral Data Analysis;177
13.6;6. Membrane Protein Insertion;181
13.7;7. Ligand and G-Protein Binding by GPCRs;183
13.8;8. Conclusions;186
13.9;. Conflicts of Interests;189
13.10;Acknowledgments;189
13.11;References;189
14;Chapter 7: Chapter 7 Tyrosine Sulfation of HIV-1 Coreceptors and Other Chemokine Receptors;192
14.1;1. Introduction;193
14.2;2. Production and Use of Tyrosine-Sulfated Peptides Derived from Chemokine Receptors;200
14.3;3. Study of Chemokine-Receptor Sulfation on the Plasma Membrane;205
14.4;4. Bacterial Expression of Tyrosine-Sulfated Peptides and Proteins;206
14.5;5. Protocols;208
14.6;6. Conclusions;212
14.7;References;213
15;Chapter 8: Chapter 8 Activation Mechanisms of Chemokine Receptors;216
15.1;1. Introduction;217
15.2;2. Current Models for 7TM Receptor Activation;220
15.3;3. Constitutive Activity of 7TM Receptors;221
15.4;4. Activation of Chemokine Receptors by Small-Molecule Agonists;222
15.5;5. Experimental Procedures;228
15.6;6. IP3 Assay in Transiently Transfected COS-7 Cells;230
15.7;References;231
16;Chapter 9: Chapter 9 The Duffy Antigen Receptor for Chemokines;236
16.1;1. Introduction;237
16.2;2. Methods for the Study of DARC as a Malarial Receptor;239
16.3;3. Methods for the Study of DARC as a Chemokine Sink;243
16.4;4. Isolation of Erythrocytes and Measurement of Chemokines;244
16.5;5. DARC as a Chemokine Transcytosis Receptor;245
16.6;6. The Assay of Chemokine Transcytosis by DARC;246
16.7;7. Conclusions;247
16.8;References;248
17;Chapter 10: Chapter Ten Hetero-Oligomerization of Chemokine Receptors;252
17.1;1. Introduction;252
17.2;2. Coimmunoprecipitation;253
17.3;3. Resonance Energy Transfer Techniques;257
17.4;4. Developing Techniques;266
17.5;References;267
18;Chapter 11: Chapter 11 Subsecond Analyses of G-Protein Coupled-Receptor ;272
18.1;1. Introduction;273
18.2;2. Analysis of GPCR Function by Flow Cytometry;274
18.3;3. Small-Volume Rapid Mix Device Flow Cytometry;276
18.4;4. General Listing of Materials;277
18.5;5. Optimizing For Analysis of Molecular Assemblies by Flow Cytometry: Receptor Affinity;279
18.6;6. Modular Molecular Assemblies of GPCR Ternary Complexes on Beads;279
18.7;7. Preparation of G-Protein Coated Beads (Ga.betagamma Beads);281
18.8;8. Analysis of Modular Dissassembly of LRG Modules;284
18.9;9. Summary and Outlook;290
18.10;Acknowledgments;290
18.11;References;290
19;Chapter 12: Chapter 12 The Use of Receptor Homology Modeling to Facilitate the Design of Selective Chemokine Receptor Antagonists;294
19.1;1. Introduction;295
19.2;2. Receptor Expansion of Rhodopsin Models as an Initial Approach;305
19.3;3. The Use of beta2-Adrenergic Receptor Structure as an Alternative Template;312
19.4;4. Conclusions;319
19.5;References;321
20;Chapter 13: Chapter 13 Characterizing Proteolytic Processing of Chemokines by Mass Spectrometry, Biochemistry, Neo-Epitope Antibodies and Functional Assays;326
20.1;1. Introduction;327
20.2;2. In vitro Processing and Characterization of Proteolysis;328
20.3;3. In Vivo Functional Characterization of Proteolysis;348
20.4;4. Summary;349
20.5;Acknowledgments;349
20.6;References;350
21;Chapter 14: Real-Time in Vitro Assays for Studying the Role of Chemokines in Lymphocyte;356
21.1;1. Introduction;357
21.2;2. Methods for Investigation of Lymphocyte Crawling and Transendothelial Migration (TEM) Under Shear Flow;359
21.3;Acknowledgments;375
21.4;References;375
22;Chapter 15: A Microfluidics-Based Method for Analyzing Leukocyte Migration to Chemoattractant Gradients;378
22.1;1. Introduction;379
22.2;2. Preparation of Microfluidic Devices;381
22.3;3. Generation of Chemoattractant Gradients;383
22.4;4. Preparation of Cells;384
22.5;5. Experimental Setup;385
22.6;6. Data Analysis;388
22.7;7. Conclusion;390
22.8;Acknowledgments;391
22.9;References;391
23;Chapter 16: Two-Photon Microscopy and Multidimensional Analysis of Cell Dynamics;394
23.1;1. Introduction;395
23.2;2. 2P Microscope Systems;397
23.3;3. Fluorescent Reporters;403
23.4;4. Imaging Preparations;405
23.5;5. Image Acquisition;410
23.6;6. Multidimensional Analysis;413
23.7;7. Presentation of 2P Microscopy Images;418
23.8;References;420
24;Chapter 17: Zymosan-Induced Peritonitis as a Simple Experimental System for the Study of Inflammation;424
24.1;1. Introduction;425
24.2;2. Materials;429
24.3;3. Methods;430
24.4;4. Expected Results;433
24.5;5. Other Considerations;437
24.6;Acknowledgments;439
24.7;References;439
25;Chapter 18: A Chemokine-Mediated in vivo T-cell Recruitment Assay;442
25.1;1. Introduction;443
25.2;2. In Vitro Activation of T Lymphocytes;444
25.3;3. In Vivo Chemokine-Mediated Recruitment;449
25.4;4. Use of In Vivo Recruitment Assay for Chemokine Studies;452
25.5;5. Conclusion;456
25.6;Acknowledgments;456
25.7;References;457
26;Author Index;458
27;Subject Index;478
28;Color Plates;486