Han / Zhang / Qin | Advances in Neural Networks - ISNN 2020 | Buch | 978-3-030-64220-4 | sack.de

Buch, Englisch, 284 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 458 g

Reihe: Theoretical Computer Science and General Issues

Han / Zhang / Qin

Advances in Neural Networks - ISNN 2020

17th International Symposium on Neural Networks, ISNN 2020, Cairo, Egypt, December 4-6, 2020, Proceedings
1. Auflage 2020
ISBN: 978-3-030-64220-4
Verlag: Springer International Publishing

17th International Symposium on Neural Networks, ISNN 2020, Cairo, Egypt, December 4-6, 2020, Proceedings

Buch, Englisch, 284 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 458 g

Reihe: Theoretical Computer Science and General Issues

ISBN: 978-3-030-64220-4
Verlag: Springer International Publishing


This volume LNCS 12557 constitutes the refereed proceedings of the 17th International Symposium on Neural Networks, ISNN 2020, held in Cairo, Egypt, in December 2020.

The 24 papers presented in the two volumes were carefully reviewed and selected from 39 submissions. The papers were organized in topical sections named: optimization algorithms; neurodynamics, complex systems, and chaos; supervised/unsupervised/reinforcement learning/deep learning; models, methods and algorithms; and signal, image and video processing.

Han / Zhang / Qin Advances in Neural Networks - ISNN 2020 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Optimization Algorithms.- Parameters Identification of Solar Cells Based on Classification Particle Swarm Optimization Algorithm.- A Quantum-Inspired Genetic K-Means Algorithm for Gene Clustering.- Spark Parallel Acceleration-based Optimal Scheduling for Air Compressor Group.- A PSO Based Technique for Optimal Integration of DG into the Power Distribution System.- Online Data-driven Surrogate-Assisted Particle Swarm Optimization for Traffic Flow Optimization.- Neurodynamics, Complex Systems, and Chaos.- Complex Dynamic Behaviors in a Discrete Chialvo Neuron Model Induced by Switching Mechanism.- Multi-Resolution Statistical Shape Models for Multi-Organ Shape Modelling.- A Neural Network for Distributed Optimization over Multiagent Networks.- Dynamically Weighted Model Predictive Control of Affine Nonlinear Systems Based on Two-timescale Neurodynamic Optimization.- An Efficient Method of Advertising on Online Social Networks.- Supervised/Unsupervised/Reinforcement Learning/Deep Learning.- Semantic Modulation Based Residual Network for Temporal Language Queries.- Grounding in Video.- AlTwo: Vehicle Recognition in Foggy Weather Based on Two-step Recognition Algorithm.- Development of a Drought Prediction System Based on Long Short-Term Memory   Networks (LSTM).- Deep Point Cloud Odometry: a Deep Learning Based Odometry with 3D Laser Point Clouds.- Models, Methods and Algorithms.- Imputation of Incomplete Data Based on Attribute Cross Fitting Model and Iterative Missing Value Variables.- Adaptive Gaussian Noise Injection Regularization for Neural Networks.- Pattern Recognition Based on Improved Szmidt and Kacprzyk's Correlation Coefficient in Pythagorean Fuzzy Environment.- On Position and Attitude Control of Flapping Wing Micro-Aerial Vehicle.- Supply Chain Financing Model with Data Analysis under the Third-party Partial Guarantee.- Signal, Image and Video Processing.- Detecting Apples in Orchards Using YOLOv3 and YOLOv5 inGeneral and Close-up Images.- Robust Graph Regularized Non-negative Matrix Factorization for Image Clustering.- ContourRend: A Segmentation Method for Improving Contours by Rendering.- Edge Information Extraction of Overlapping Fiber Optical Microscope Imaging Based on Modified Watershed Algorithm.- A Visually Impaired Assistant using Neural Network and Image Recognition with Physical Navigation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.