E-Book, Englisch, Band 216, 243 Seiten, eBook
Han Physics and Techniques of Ceramic and Polymeric Materials
1. Auflage 2019
ISBN: 978-981-13-5947-7
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of Chinese Materials Conference 2018
E-Book, Englisch, Band 216, 243 Seiten, eBook
Reihe: Springer Proceedings in Physics
ISBN: 978-981-13-5947-7
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book gathers selected papers from the Chinese Materials Conference 2018 (CMC2018) held in Xiamen City, Fujian, China, on July 12–16, 2018. The Chinese Materials Conference (CMC) is the Chinese Materials Research Society’s most important conference series and has been held annually since the early 1990s. The 2018 edition consisted of 32 domestic symposia, 2 international symposia and 1 international materials forum. This proceedings book covers the fields of advanced ceramic materials and polymer materials, and presents recent original research results from more than 300 research groups in various universities and research institutes.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;7
3;Contributors;10
4;Preparation of Al2O3 Ceramic Cores by Dry-Pressing Assisted of Precursor-Derived Ceramic Technology;18
4.1;1 Introduction;18
4.2;2 Experimental Procedure;19
4.3;3 Results and Discussion;20
4.4;4 Conclusions;24
4.5;References;25
5;Effect of Reaction Temperature on CeO2-Coated cBN Particles for Vitrified cBN Abrasive Tools;26
5.1;1 Introduction;27
5.2;2 Materials and Methods;28
5.3;3 Results and Discussions;29
5.4;4 Conclusions;32
5.5;References;33
6;Bifunctional Roles of Dialdehyde Cellulose Nanocrystals in Reinforcing and Cross-Linking Electrospun Chitosan Nanofibrous Membranes;34
6.1;1 Introduction;34
6.2;2 Experimental;35
6.2.1;2.1 Materials;35
6.2.2;2.2 Preparation;35
6.2.3;2.3 Characterization;36
6.3;3 Results and Discussion;36
6.4;4 Conclusions;39
6.5;References;39
7;Fabrication of Porous SiO2 Nanofibers by Electrospinning with the Anti-solvent Process;41
7.1;1 Introduction;41
7.2;2 Experimental Procedure;42
7.2.1;2.1 Materials and Methods;42
7.2.2;2.2 Characterization;43
7.3;3 Results and Discussion;43
7.4;4 Summary;47
7.5;References;47
8;The Mechanical Property and Crystalline Structure of Novel High-Strength Polyamide Fibers;49
8.1;1 Introduction;49
8.2;2 Experimental;51
8.2.1;2.1 Material and Sample Preparation;51
8.2.2;2.2 Thermal Performance of PA6/66 Fibers;51
8.2.3;2.3 The Mechanical Property of PA6/66 Fibers;51
8.2.4;2.4 The Crystalline Structure of PA6/66 Fibers;52
8.3;3 Results and Discussion;53
8.3.1;3.1 Effect of Draft Ratios on the Properties of PA6/66 Fibers;53
8.3.2;3.2 Effect of Drawing Temperature on the Properties of PA6/66 Fibers;57
8.4;4 Conclusions;61
8.5;References;61
9;Nonlinearity in Relaxor-Type Ferroelectrics Ceramics;63
9.1;1 Introduction;63
9.2;2 Experimental Procedure;64
9.3;3 Results and Discussion;65
9.3.1;3.1 X-Ray Diffraction (XRD) Results and Discussion;65
9.3.2;3.2 Scanning Electron Microscopy (SEM) Results and Discussion;66
9.3.3;3.3 Ferroelectric Hysteresis Measurement Results and Discussion;67
9.3.4;3.4 Field Dependence of P–E Relationships;67
9.3.5;3.5 Frequency Dependence of P–E Relationships;68
9.3.6;3.6 Temperature Dependence of P–E Relationships;69
9.4;4 Conclusions;70
9.5;References;70
10;Effect of Winding Speed on the Structure and Mechanical Properties of High-Strength Polyamide 6 Fibers;72
10.1;1 Introduction;72
10.2;2 Experimental;73
10.2.1;2.1 Materials;73
10.2.2;2.2 Characterization;73
10.3;3 Results and Discussion;75
10.3.1;3.1 Effect of Winding Speed on Mechanical Properties of PA6;75
10.3.2;3.2 Effect of Winding Speed on Thermal Properties of PA6;76
10.3.3;3.3 Effect of Winding Speed on Crystalline Structures of PA6;77
10.4;4 Conclusions;80
10.5;References;80
11;Natural Compounds for the Stabilization and Coloration of Polypropylene;82
11.1;1 Introduction;82
11.2;2 Experimental;83
11.2.1;2.1 Materials;83
11.2.2;2.2 Extractions;84
11.2.3;2.3 Sample Preparations;84
11.2.4;2.4 Sample Characterizations;84
11.3;3 Results and Discussion;85
11.3.1;3.1 Thermal Stability of the Samples;85
11.3.2;3.2 Processing Stability of the Samples;85
11.3.3;3.3 Mechanical Property of the Samples;88
11.3.4;3.4 Color of the Samples;89
11.4;4 Conclusions;90
11.5;References;90
12;Surface Plasma Modification and Coating Properties of Quartz Fiber;91
12.1;1 Introduction;91
12.2;2 Experimental;92
12.2.1;2.1 Preparation of Coating;92
12.2.2;2.2 Characterization of the Coating;93
12.3;3 Results and Analysis;94
12.3.1;3.1 Energy Spectrum Analysis;94
12.3.2;3.2 Surface Morphologies;95
12.3.3;3.3 Tensile Properties;97
12.4;4 Conclusion;98
12.5;References;98
13;Fabrication of Porous HA Ceramic Substrates by Freeze-Tape-Casting and Its Permeability Features;99
13.1;1 Introduction;99
13.2;2 Experimental Procedure;100
13.2.1;2.1 Materials and Methods;100
13.2.2;2.2 Characterization;101
13.3;3 Results and Discussion;101
13.3.1;3.1 Single-Layer Porous HA Substrates;101
13.3.2;3.2 Multilayer Porous HA Substrates with Uniform Porosity;102
13.4;4 Summary;104
13.5;References;105
14;Microstructure Analysis of SiC Ceramics and SiCf/SiC Composites by Diffusion Bonding;106
14.1;1 Introduction;106
14.2;2 Experimental;107
14.2.1;2.1 Materials;107
14.2.2;2.2 Experimental Procedure;108
14.3;3 Results and Discussion;108
14.3.1;3.1 Microstructure of SiC Ceramics and SiCf/SiC Composites;108
14.3.2;3.2 Microstructure of the Joint Between SiC Ceramics and Ti;109
14.3.3;3.3 Microstructure of the Joint Between SiC Ceramics;111
14.3.4;3.4 Microstructure of the Joint Between SiCf/SiC Composites;113
14.4;4 Conclusion;116
14.5;References;117
15;Microstructure and Mechanical Properties of SiBCN Ceramics;118
15.1;1 Introduction;118
15.2;2 Experimental Part;119
15.2.1;2.1 Raw Materials and Ratio;119
15.2.2;2.2 Preparation of Massive Ceramics;119
15.3;3 Results and Discussion;120
15.3.1;3.1 Mechanical Properties;120
15.3.2;3.2 Microstructure;121
15.3.3;3.3 Phase Analysis;122
15.4;4 Conclusion;124
15.5;References;124
16;Effect of Ambient Temperature on the Emission Spectra of Mg2+- and Ga3+-Doped CaS:Eu2+ Red Phosphors;125
16.1;1 Introduction;125
16.2;2 Experimental;126
16.3;3 Results and Discussion;126
16.3.1;3.1 The Effect of Ambient Temperature on Luminescent Properties of the Phosphors;126
16.3.2;3.2 The Full Widths at Half Maximum (FWHM) and CIE Chromaticity Coordinates of Phosphors;128
16.4;4 Conclusions;129
16.5;References;130
17;Quaternary Ammonium Compounds-Modified Halloysite and Its Antifungal Performance;132
17.1;1 Introduction;132
17.2;2 Materials and Methods;134
17.2.1;2.1 Materials;134
17.2.2;2.2 Preparation;134
17.2.3;2.3 Characterization;135
17.3;3 Results and Discussion;136
17.3.1;3.1 FT-IR;136
17.3.2;3.2 Thermogravimetric Analyses;137
17.3.3;3.3 Zeta Potential;138
17.3.4;3.4 Contact Angle;139
17.3.5;3.5 Inhibition Zone Test;139
17.4;4 Conclusions;141
17.5;References;141
18;The Development of a New Reinforced Thermoplastic Pipe with Large Diameter for Oil and Gas Transmission Pipeline;143
18.1;1 Introduction;143
18.2;2 Pipe Specifications;144
18.3;3 Materials Property;145
18.4;4 Finite Element Analyses;146
18.5;5 Short-Term Burst Test;147
18.6;6 Conclusions;148
18.7;References;148
19;A Study on the Radial Difference of PLA Monofilament;150
19.1;1 Introduction;150
19.2;2 Experimental;152
19.2.1;2.1 Materials;152
19.2.2;2.2 Preparation of PLA Monofilaments;152
19.2.3;2.3 Drawing Process;152
19.2.4;2.4 Characterization;152
19.3;3 Results and Discussion;153
19.3.1;3.1 Thermal Properties and Crystallinity;153
19.3.2;3.2 Radial Difference of Crystallization and Molecular Orientation;156
19.4;4 Conclusions;161
19.5;References;161
20;Study on Preparation and Properties of Hydrophilic Copolyester of PET-co-PEA/Nano SiO2;163
20.1;1 Introduction;163
20.2;2 Experiment;164
20.2.1;2.1 Materials;164
20.2.2;2.2 Surface Modification of Nano-SiO2;164
20.2.3;2.3 Synthesis of PET-co-PEA/Nano-SiO2 Copolyester;165
20.2.4;2.4 Characterization;166
20.3;3 Result and Discussion;167
20.3.1;3.1 Morphological Analysis;167
20.3.2;3.2 FTIR Investigation;167
20.3.3;3.3 DSC Measurement;168
20.3.4;3.4 TG Analysis;170
20.3.5;3.5 Contact Angle Analysis;170
20.4;4 Conclusion;171
20.5;References;171
21;Preparation and Oxidation Behavior of SiO2/SiC Coating on Braided Carbon Fiber;172
21.1;1 Introduction;172
21.2;2 Materials and Methods;173
21.2.1;2.1 The Novel Electrolytic Plasma Spraying;173
21.2.2;2.2 Characterization Methods;174
21.3;3 Results and Discussion;174
21.3.1;3.1 Characterization of Coating;174
21.3.2;3.2 XPS Analysis;175
21.3.3;3.3 Oxidation Resistance;175
21.4;4 Conclusions;177
21.5;References;177
22;Enhanced Biocompatibility via Adjusting the Soft-to-Hard Segment Ratios of Poly (Ether-Block-Amide) Medical Hollow Fiber Tube for Invasive Medical Devices;179
22.1;1 Introduction;180
22.2;2 Experiment;181
22.2.1;2.1 Materials;181
22.2.2;2.2 Preparation of Pebax Hollow Fiber Tube with Various Soft-to-Hard Segment Ratios;181
22.2.3;2.3 Preparation of Pebax Film with Various Soft-to-Hard Segment Ratios;181
22.2.4;2.4 Characterization;181
22.3;3 Result and Discussion;183
22.3.1;3.1 The Structure of Pebax Hollow Fiber Tube with Various Soft-to-Hard Segment Ratios;183
22.3.2;3.2 The Crystallinity of Pebax Hollow Fiber Tube with Various Soft Segment Components;184
22.3.3;3.3 Morphologies of Pebax Hollow Fiber Tube with Various Soft-to-Hard Segment Ratios;184
22.3.4;3.4 Phase Images of Pebax Hollow Fiber Tube with Various Soft-to-Hard Segment Ratios;185
22.3.5;3.5 Wettability of Pebax Films with Various Soft-to-Hard Segment Ratios;186
22.3.6;3.6 The Dynamical Thermal Mechanical Property;187
22.3.7;3.7 Biocompatibility of Pebax Hollow Fiber Tube with Various Soft-to-Hard Segment Ratios;187
22.3.8;3.8 Mechanical Properties of Pebax Hollow Fiber Tube with Various Soft-to-Hard Segment Ratios;189
22.4;4 Conclusion;190
22.5;References;190
23;Temperature Dependence of Electrical Conductivity of Carbon Nanotube Films from 300 to 1100 K;192
23.1;1 Introduction;192
23.2;2 Experimental;193
23.3;3 Results and Discussion;194
23.3.1;3.1 Microstructures of the CNT Film;194
23.3.2;3.2 Conductivity-Temperature Characteristic of the CNT Film;195
23.3.3;3.3 Temperature Dependence of the Rtube;196
23.3.4;3.4 Temperature Dependence of the Rcontact;196
23.3.5;3.5 Conduction Mechanism of the CNT Film;196
23.4;4 Conclusion;197
23.5;References;198
24;Study on the Semiconducting Grain and Insulating Barrier Layer in Aluminum/Niobium Co-doped CCTO;200
24.1;1 Introduction;200
24.2;2 Experimental;201
24.3;3 Results and Discussion;202
24.4;4 Conclusions;207
24.5;References;207
25;The Effect of Al Doping on Ferroelectric and Dielectric Properties of PLZT Transparent Electro-optical Ceramics;209
25.1;1 Introduction;209
25.2;2 Experimental Procedure;210
25.3;3 Results and Discussion;211
25.4;4 Summary;214
25.5;References;214
26;Preparation and Properties of PMMA Nanofibers with Photochromic and Photoluminescent Functions;216
26.1;1 Introduction;216
26.2;2 Materials and Methods;218
26.2.1;2.1 Materials;218
26.2.2;2.2 Synthesis of SP-PMMA;218
26.2.3;2.3 Preparation of Multi-base Photochromic SP-PMMA Nanofibers;219
26.3;3 Results and Discussion;219
26.3.1;3.1 The Structure Characterization of SP-PMMA;219
26.3.2;3.2 Thermal Performance Analysis of SP-PMMA;220
26.3.3;3.3 Gel Permeation Chromatography (GPC) Analysis of SP-PMMA;221
26.3.4;3.4 Measurement and Characterization of SP-PMMA Nanofibers;221
26.3.5;3.5 Morphologies of SP-PMMA Nanofibers Under Optimal Conditions;223
26.3.6;3.6 Fluorescent Spectra of SP-PMMA Nanofibers;224
26.3.7;3.7 Photochromic Properties of SP-PMMA Nanofibers;225
26.3.8;3.8 Multi-base Photochromic and Photoluminescent Properties of SP-PMMA Nanofibers and Nonwoven;226
26.4;4 Conclusions;227
26.5;References;228
27;Network Structures and Thermal Characteristics of Bi2O3–SiO2–B2O3 Glass Powder by Sol-Gel;230
27.1;1 Introduction;230
27.2;2 Experiment;231
27.2.1;2.1 Sample Preparation;231
27.2.2;2.2 Sample Characterization;232
27.3;3 Results and Discussion;232
27.3.1;3.1 Network Structure Analysis;232
27.3.2;3.2 Thermal Performance;235
27.4;4 Conclusions;238
27.5;References;239
28;Correction to: Network Structures and Thermal Characteristics of Bi2O3–SiO2–B2O3 Glass Powder by Sol-Gel;241
28.1;Correction to: Chapter “Network Structures and Thermal Characteristics of Bi2O3–SiO2–B2O3 Glass Powder by Sol-Gel” in: Y. Han (ed.), Physics and Techniques of Ceramic and Polymeric Materials, Springer Proceedings in Physics 216, https://doi.org/10.1007/978-981-13-5947-7_24;241
29;Index;242