Han / Pei / Tong | Data Mining | Buch | 978-0-12-811760-6 | sack.de

Buch, Englisch, 752 Seiten, Format (B × H): 190 mm x 230 mm, Gewicht: 1194 g

Han / Pei / Tong

Data Mining

Concepts and Techniques
4th Auflage
ISBN: 978-0-12-811760-6
Verlag: Elsevier Science

Concepts and Techniques

Buch, Englisch, 752 Seiten, Format (B × H): 190 mm x 230 mm, Gewicht: 1194 g

ISBN: 978-0-12-811760-6
Verlag: Elsevier Science


Data Mining: Concepts and Techniques, Fourth Edition introduces concepts, principles, and methods for mining patterns, knowledge, and models from various kinds of data for diverse applications. Specifically, it delves into the processes for uncovering patterns and knowledge from massive collections of data, known as knowledge discovery from data, or KDD. It focuses on the feasibility, usefulness, effectiveness, and scalability of data mining techniques for large data sets.

After an introduction to the concept of data mining, the authors explain the methods for preprocessing, characterizing, and warehousing data. They then partition the data mining methods into several major tasks, introducing concepts and methods for mining frequent patterns, associations, and correlations for large data sets; data classificcation and model construction; cluster analysis; and outlier detection. Concepts and methods for deep learning are systematically introduced as one chapter. Finally, the book covers the trends, applications, and research frontiers in data mining.

Han / Pei / Tong Data Mining jetzt bestellen!

Zielgruppe


<p>Upper-level undergrads and graduate students studying data mining in computer science programs. Data warehouse engineers, data mining professionals, database researchers, statisticians, data analysts, data modelers, and other data professionals working on data mining at the R&D and implementation levels</p>

Weitere Infos & Material


1. Introduction
2. Data, measurements, and data processing
3. Data warehousing and online analytical processing
4. Pattern mining: basic concepts and methods
5. Pattern mining: advanced methods
6. Classification: basic concepts and methods
7. Classification: advanced methods
8. Cluster analysis: basic concepts and methods
9. Cluster analysis: advanced methods
10. Deep learning
11. Outlier Detection
12. Data mining trends and research frontiers
Appendix: Mathematical background


Han, Jiawei
Jiawei Han is Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Well known for his research in the areas of data mining and database systems, he has received many awards for his contributions in the field, including the 2004 ACM SIGKDD Innovations Award. He has served as Editor-in-Chief of ACM Transactions on Knowledge Discovery from Data, and on editorial boards of several journals, including IEEE Transactions on Knowledge and Data Engineering and Data Mining and Knowledge Discovery.

Tong, Hanghang
Hanghang Tong Ph.D. is currently an associate professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Before that he was an associate professor at the School of Computing, Informatics, and Decision Systems Engineering (CIDSE), Arizona State University. He received his M.Sc. and Ph.D. degrees from Carnegie Mellon University in 2008 and 2009, both in Machine Learning. His research interest is in large scale data mining for graphs and multimedia. He has received several awards, including SDM/IBM Early Career Data Mining Research award (2018), NSF CAREER award (2017), ICDM 10-Year Highest Impact Paper award (2015), four best paper awards (TUP'14, CIKM'12, SDM'08, ICDM'06), seven 'bests of conference', 1 best demo, honorable mention (SIGMOD'17), and 1 best demo candidate, second place (CIKM'17). He has published over 100 refereed articles. He is the Editor-in-Chief of SIGKDD Explorations (ACM), an action editor of Data Mining and Knowledge Discovery (Springer), and an associate editor of Knowledge and Information Systems (Springer) and Neurocomputing Journal (Elsevier); and has served as a program committee member in multiple data mining, database and artificial intelligence venues (e.g., SIGKDD, SIGMOD, AAAI, WWW, CIKM, etc.).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.