Hamilton | Advances in Artificial Intelligence | E-Book | sack.de
E-Book

E-Book, Englisch, Band 1822, 448 Seiten, eBook

Reihe: Lecture Notes in Computer Science

Hamilton Advances in Artificial Intelligence

13th Biennial Conference of the Canadian Society for Computational Studies of Intelligence, AI 2000 Montreal, Quebec, Canada, May 14-17, 2000 Proceedings
2000
ISBN: 978-3-540-45486-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

13th Biennial Conference of the Canadian Society for Computational Studies of Intelligence, AI 2000 Montreal, Quebec, Canada, May 14-17, 2000 Proceedings

E-Book, Englisch, Band 1822, 448 Seiten, eBook

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-45486-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Hamilton Advances in Artificial Intelligence jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Games / Constraint Satisfaction.- Unifying Single-Agent and Two-Player Search.- Are Bees Better than Fruitflies?.- A Constraint Directed Model for Partial Constraint Satisfaction Problems.- Natural Language I.- Using Noun Phrase Heads to Extract Document Keyphrases.- Expanding the Type Hierarchy with Nonlexical Concepts.- Using Object Influence Areas to Quantitatively Deal with Neighborhood and Perception in Route Descriptions.- An Extendable Natural Language Interface to a Consumer Service Database.- Knowledge Representation.- Identifying and Eliminating Irrelevant Instances Using Information Theory.- Keep It Simple: A Case-Base Maintenance Policy Based on Clustering and Information Theory.- On the Integration of Recursive -Theories.- Natural Language II.- Collocation Discovery for Optimal Bilingual Lexicon Development.- The Power of the TSNLP: Lessons from a Diagnostic Evaluation of a Broad-Coverage Parser.- A Parallel Approach to Unified Cognitive Modeling of Language Processing within a Visual Context.- AI Applications.- Interact: A Staged Approach to Customer Service Automation.- Towards Very Large Terminological Knowledge Bases: A Case Study from Medicine.- The Use of Ontologies and Meta-knowledge to Facilitate the Sharing of Knowledge in a Multi-agent Personal Communication System.- Machine Learning / Data Mining.- ASERC - A Genetic Sequencing Operator for Asymmetric Permutation Problems.- CViz: An Interactive Visualization System for Rule Induction.- Learning Pseudo-independent Models: Analytical and Experimental Results.- Planning / Theorem Proving / Artificial Life.- Learning Rewrite Rules versus Search Control Rules to Improve Plan Quality.- Scheduling Methods for Parallel Automated Theorem Proving.- Simulating Competing Alife Organisms by Constructive Compound Neural Networks.- Neural Networks.- A Recognition-Based Alternative to Discrimination-Based Multi-layer Perceptrons.- Accelerated Backpropagation Learning: Extended Dynamic Parallel Tangent Optimization Algorithm.- Neural ARX Models and PAC Learning.- Posters.- Qualitative Descriptors and Action Perception.- A Comparison of Association Rule Discovery and Bayesian Network Causal Inference Algorithms to Discover Relationships in Discrete Data.- Towards an Automated Citation Classifier.- Typical Example Selection for Learning Classifiers.- Comparative Study of Neural Network Controllers for Nonlinear Dynamic Systems.- The Iterative Multi-agent Method for Solving Complex Search Problems.- Relational Learning with Transfer of Knowledge Between Domains.- Surviving in a Hostile Multi-agent Environment: How Simple Affective States Can Aid in the Competition for Resources.- Task-Structure Based Mediation: The Travel-Planning Assistant Example.- Considerations on Compositional Update Operators.- The Degeneration of Relevance in Uncertain Temporal Domains: An Empirical Study.- The Learnability of Naive Bayes.- Invited Presentations.- Parsing to Meaning, Statistically.- Automated Discovery: A Fusion of Multidisciplinary Principles.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.