1;Science of Synthesis: Knowledge Updates 2011/4;1
1.1;Title page;5
1.2;Imprint;7
1.3;Preface;8
1.4;Abstracts;10
1.5;Overview;16
1.6;Table of Contents;18
1.7;Volume 2: Compounds of Groups 7–3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···);32
1.7.1;2.12 Product Class 12: Organometallic Complexes of Scandium, Yttrium, and the Lanthanides;32
1.7.1.1;2.12.15 Organometallic Complexes of Scandium, Yttrium, and the Lanthanides;32
1.7.1.1.1;2.12.15.1 Lanthanide-Catalyzed Mukaiyama Aldol Reactions;32
1.7.1.1.1.1;2.12.15.1.1 Method 1: Non-enantioselective Formation of ß-Hydroxycarbonyls;32
1.7.1.1.1.2;2.12.15.1.2 Method 2: Enantioselective Formation of ß-Hydroxycarbonyls;35
1.7.1.1.1.2.1;2.12.15.1.2.1 Variation 1: In an Organic Solvent;35
1.7.1.1.1.2.2;2.12.15.1.2.2 Variation 2: In an Aqueous Solvent;38
1.7.2;2.14 Product Class 14: Group 4 Metallocene Complexes with Bis(trimethylsilyl)acetylene;42
1.7.2.1;2.14.1 Product Subclass 1: Titanocene–Bis(trimethylsilyl)acetylene Complexes;44
1.7.2.1.1;Synthesis of Product Subclass 1;44
1.7.2.1.1.1;2.14.1.1 Method 1: Reduction of a Dichlorobis(.5-cyclopentadienyl)titanium Derivative in the Presence of Bis(trimethylsilyl)acetylene;44
1.7.2.1.1.1.1;2.14.1.1.1 Variation 1: Reduction and Intramolecular Dehydrocoupling of Cyclopentadienyl Fragments;45
1.7.2.1.1.2;2.14.1.2 Method 2: Methane Elimination from Bis(.5-cyclopentadienyl)dimethyltitanium(IV);46
1.7.2.1.2;Applications of Product Subclass 1 in Organometallic Reactions;46
1.7.2.1.2.1;2.14.1.3 Method 3: Reactions with Brønsted Acids;46
1.7.2.1.2.1.1;2.14.1.3.1 Variation 1: Reaction with Methanol;48
1.7.2.1.2.2;2.14.1.4 Method 4: Titanocene–Bis(trimethylsilyl)acetylene Complexes in the Formation of Metallacycles;49
1.7.2.1.2.2.1;2.14.1.4.1 Variation 1: Formation of Five-Membered Group 4 Metallacycles;49
1.7.2.1.2.2.2;2.14.1.4.2 Variation 2: Formation of Six-Membered Metallacycles;50
1.7.2.1.2.2.3;2.14.1.4.3 Variation 3: Formation of Three-Membered Aza-metallacycles;51
1.7.2.1.2.2.4;2.14.1.4.4 Variation 4: Formation of Four- and Five-Membered Aza-metallacycles;53
1.7.2.1.2.2.5;2.14.1.4.5 Variation 5: Coupling Reactions of Dichlorophosphines and the Formation of Phospha-metallacycles;55
1.7.2.1.2.2.6;2.14.1.4.6 Variation 6: Formation of Stiba-metallacycles;56
1.7.2.1.2.2.7;2.14.1.4.7 Variation 7: Formation of Four-Membered Thia-metallacycles;58
1.7.2.1.2.2.8;2.14.1.4.8 Variation 8: Formation of Four-Membered Selena-metallacycles;59
1.7.2.1.2.3;2.14.1.5 Method 5: Titanocene–Bis(trimethylsilyl)acetylene Complexes in Supramolecular Chemistry;59
1.7.2.1.2.3.1;2.14.1.5.1 Variation 1: Dehydrogenative Coupling;62
1.7.2.1.2.4;2.14.1.6 Method 6: Titanocene–Bis(trimethylsilyl)acetylene Complexes in Bond-Activation Reactions;63
1.7.2.1.2.4.1;2.14.1.6.1 Variation 1: Dinitrogen Activation;63
1.7.2.1.2.4.2;2.14.1.6.2 Variation 2: C--F Bond Activation;64
1.7.2.1.2.4.3;2.14.1.6.3 Variation 3: C--C Single-Bond Metathesis;65
1.7.2.1.2.5;2.14.1.7 Method 7: Catalytic Hydroamination of Alkynes;66
1.7.2.1.2.6;2.14.1.8 Method 8: Catalytic Dehydrogenation of Dimethylamine Borane;67
1.7.2.1.2.7;2.14.1.9 Method 9: Oxidation Reactions;67
1.7.2.1.2.8;2.14.1.10 Method 10: Reactions with Alkynes: Alkyne Substitution Reactions;68
1.7.2.1.2.8.1;2.14.1.10.1 Variation 1: Reactions with Alkynylsilanes;70
1.7.2.1.2.8.2;2.14.1.10.2 Variation 2: Reactions with Polyynes;70
1.7.2.1.2.9;2.14.1.11 Method 11: Lewis Base Exchange;72
1.7.2.1.2.10;2.14.1.12 Method 12: Reactions with Carbon Dioxide;72
1.7.2.2;2.14.2 Product Subclass 2: Zirconocene–Bis(trimethylsilyl)acetylene Complexes;73
1.7.2.2.1;Synthesis of Product Subclass 2;73
1.7.2.2.1.1;2.14.2.1 Method 1: Reduction of a Dichlorobis(.5-cyclopentadienyl)zirconium(IV) in the Presence of Bis(trimethylsilyl)acetylene;73
1.7.2.2.1.1.1;2.14.2.1.1 Variation 1: By Ligand Substitution;75
1.7.2.2.2;Applications of Product Subclass 2 in Organometallic Reactions;76
1.7.2.2.2.1;2.14.2.2 Method 2: Reactions with Brønsted Acids;76
1.7.2.2.2.2;2.14.2.3 Method 3: Reactions with Internal Alkynes;77
1.7.2.2.2.2.1;2.14.2.3.1 Variation 1: Alkyne Substitutions;78
1.7.2.2.2.2.2;2.14.2.3.2 Variation 2: Formation of Zirconacyclopenta-2,4-dienes;79
1.7.2.2.2.2.3;2.14.2.3.3 Variation 3: Macrocyclization;82
1.7.2.2.2.2.4;2.14.2.3.4 Variation 4: Formation of Pentakis(pentafluorophenyl)borole;83
1.7.2.2.2.3;2.14.2.4 Method 4: Reactions with Terminal Alkynes;84
1.7.2.2.2.4;2.14.2.5 Method 5: Reactions with Carbonyl Compounds;85
1.7.2.2.2.5;2.14.2.6 Method 6: Zirconocene–Bis(trimethylsilyl)acetylene Complexes in the Formation of Metallacycles;86
1.7.2.2.2.5.1;2.14.2.6.1 Variation 1: Formation of Five-Membered Metallacycles;86
1.7.2.2.2.5.2;2.14.2.6.2 Variation 2: Formation of Three-Membered Aza-metallacycles;87
1.7.2.2.2.5.3;2.14.2.6.3 Variation 3: Formation of Five-Membered Aza-metallacycles;88
1.7.2.2.2.5.4;2.14.2.6.4 Variation 4: Formation of Five- and Seven-Membered Oxa-metallacycles;89
1.7.2.2.2.5.5;2.14.2.6.5 Variation 5: Formation of Four-Membered Thia-metallacycles;90
1.7.2.2.2.6;2.14.2.7 Method 7: Zirconocene–Bis(trimethylsilyl)acetylene Complexes in Bond-Activation Reactions;91
1.7.2.2.2.6.1;2.14.2.7.1 Variation 1: Dinitrogen Activation;91
1.7.2.2.2.6.2;2.14.2.7.2 Variation 2: C--F versus C--H Bond Activation;92
1.7.2.2.2.6.3;2.14.2.7.3 Variation 3: C--H Bond Activation;93
1.7.2.3;2.14.3 Product Subclass 3: Hafnocene Bis(trimethylsilyl)acetylene Complexes;94
1.7.2.3.1;Synthesis of Product Subclass 3;94
1.7.2.3.1.1;2.14.3.1 Method 1: Reduction of a Dichlorobis(.5-cyclopentadienyl)hafnium in the Presence of Bis(trimethylsilyl)acetylene;94
1.7.2.3.1.2;2.14.3.2 Method 2: Synthesis from Dibutylbis(.5-cyclopentadienyl)hafnium(IV);97
1.7.2.3.2;Applications of Product Subclass 3 in Organometallic Reactions;97
1.7.2.3.2.1;2.14.3.3 Method 3: Reactions with Alkenes;97
1.8;Volume 6: Boron Compounds;104
1.8.1;6.1 Product Class 1: Boron Compounds;104
1.8.1.1;6.1.7.11 Hydroxyboranes;104
1.8.1.1.1;6.1.7.11.1 Method 1: Synthesis by Metal-Catalyzed C--H Borylation;104
1.8.1.1.1.1;6.1.7.11.1.1 Variation 1: Aromatic C--H Borylation;104
1.8.1.1.1.2;6.1.7.11.1.2 Variation 2: Dehydrogenative Borylation;107
1.8.1.1.2;6.1.7.11.2 Method 2: Synthesis by Borylative Cross Coupling;108
1.8.1.1.2.1;6.1.7.11.2.1 Variation 1: Palladium-Catalyzed Borylative Cross Coupling;108
1.8.1.1.2.2;6.1.7.11.2.2 Variation 2: Nickel- and Copper-Catalyzed Borylative Cross Coupling;109
1.8.1.1.2.3;6.1.7.11.2.3 Variation 3: Metal-Free Borylative Cross Coupling;110
1.8.1.1.3;6.1.7.11.3 Method 3: Synthesis by Direct Borylation with Borenium Cations;111
1.8.1.1.4;6.1.7.11.4 Method 4: Synthesis by Addition Reactions with Diboron Species;112
1.8.1.1.4.1;6.1.7.11.4.1 Variation 1: Addition of Diboron Species to Carbonyl or Thiocarbonyl Groups, or Aldimines;113
1.8.1.1.4.2;6.1.7.11.4.2 Variation 2: ß-Boration of a,ß-Unsaturated Carbonyl Derivatives;114
1.8.1.1.5;6.1.7.11.5 Method 5: Synthesis by Hydrolysis of Boronates or Trifluoro(organo)borates;115
1.8.1.1.6;6.1.7.11.6 Method 6: Chemoselective Chemical Transformations of Parent Free Boronic Acids or Derivatives;117
1.8.1.1.7;6.1.7.11.7 Method 7: Applications as Catalysts or Stoichiometric Reaction Promoters;118
1.8.1.1.7.1;6.1.7.11.7.1 Variation 1: Activation of Carboxylic Acids;119
1.8.1.1.7.2;6.1.7.11.7.2 Variation 2: Activation of Alcohols;121
1.8.1.1.7.3;6.1.7.11.7.3 Variation 3: Activation of Carbonyl Groups;123
1.8.1.1.7.4;6.1.7.11.7.4 Variation 4: Use as Stoichiometric Reaction Promoters;124
1.8.1.1.8;6.1.7.11.8 Method 8: Applications in Carbon--Heteroatom Bond Formation;125
1.8.1.1.8.1;6.1.7.11.8.1 Variation 1: C--O Bond Formation;126
1.8.1.1.8.2;6.1.7.11.8.2 Variation 2: C--X Bond Formation (X = Halogen);127
1.8.1.1.8.3;6.1.7.11.8.3 Variation 3: C--N Bond Formation;128
1.8.1.1.9;6.1.7.11.9 Method 9: Applications in C--C Bond Formation;129
1.8.1.1.9.1;6.1.7.11.9.1 Variation 1: ipso-Trifluoromethylation and ipso-Cyanation;129
1.8.1.1.9.2;6.1.7.11.9.2 Variation 2: C--H Arylation and Alkylation;130
1.8.1.1.9.3;6.1.7.11.9.3 Variation 3: Metal-Catalyzed Cross-Coupling Reactions;131
1.8.1.1.9.4;6.1.7.11.9.4 Variation 4: Addition and Substitution Reactions;133
1.8.1.1.10;6.1.7.11.10 Method 10: Applications as Productive Tags for Phase-Switch Purification;134
1.8.1.1.11;6.1.7.11.11 Method 11: Applications in Medicine and Materials Science;136
1.9;Volume 7: Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be ··· Ba);144
1.9.1;7.1 Product Class 1: Aluminum Compounds;144
1.9.1.1;7.1.4.7 Aluminum Alkoxides and Phenoxides;144
1.9.1.1.1;7.1.4.7.1 Method 1: Synthesis by Treatment of Alkylaluminum Compounds with Phenols;144
1.9.1.1.1.1;7.1.4.7.1.1 Variation 1: Reaction To Give Aluminum–Salen Complexes and Their µ-Oxo Dimers;144
1.9.1.1.2;7.1.4.7.2 Method 2: Applications of Aluminum Alkoxides;145
1.9.1.1.2.1;7.1.4.7.2.1 Variation 1: Reductions;145
1.9.1.1.2.2;7.1.4.7.2.2 Variation 2: Michael Additions;145
1.9.1.1.3;7.1.4.7.3 Method 3: Applications of Aluminum Phenoxides;146
1.9.1.1.3.1;7.1.4.7.3.1 Variation 1: Carbonyl Additions and Reductions;146
1.9.1.1.3.2;7.1.4.7.3.2 Variation 2: Conjugate Additions;147
1.9.1.1.3.3;7.1.4.7.3.3 Variation 3: Aldol Reactions;148
1.9.1.1.3.4;7.1.4.7.3.4 Variation 4: Meerwein–Ponndorf–Verley Reactions;151
1.9.1.1.3.5;7.1.4.7.3.5 Variation 5: Oppenauer Reactions;153
1.9.1.1.3.6;7.1.4.7.3.6 Variation 6: Cycloadditions;153
1.9.1.1.3.7;7.1.4.7.3.7 Variation 7: Cyclizations;154
1.9.1.1.3.8;7.1.4.7.3.8 Variation 8: Ferrier Reactions;155
1.9.1.1.3.9;7.1.4.7.3.9 Variation 9: Claisen Rearrangements;156
1.9.1.1.3.10;7.1.4.7.3.10 Variation 10: Intramolecular Prenyl Transfer Reactions;157
1.9.1.1.3.11;7.1.4.7.3.11 Variation 11: Radical Reactions;157
1.9.1.1.3.12;7.1.4.7.3.12 Variation 12: Asymmetric Conjugate Additions;158
1.9.1.1.3.13;7.1.4.7.3.13 Variation 13: Asymmetric Acylations;159
1.9.1.1.3.14;7.1.4.7.3.14 Variation 14: Asymmetric Wagner–Meerwein-Type Rearrangements;159
1.9.1.1.3.15;7.1.4.7.3.15 Variation 15: Asymmetric Passerini-Type Reactions;160
1.9.1.2;7.1.7.15 Aluminum Amides;162
1.9.1.2.1;7.1.7.15.1 Method 1: Synthesis by Treatment of Alkylaluminum Compounds with Amines;162
1.9.1.2.2;7.1.7.15.2 Method 2: Applications in Transformation of Esters;162
1.9.1.2.3;7.1.7.15.3 Method 3: Applications in Transformation of Amides;163
1.9.1.2.4;7.1.7.15.4 Method 4: Applications in Alkylation with Aluminum Reagents;163
1.9.1.2.5;7.1.7.15.5 Method 5: Applications in Wagner–Meerwein-Type Rearrangements;165
1.9.1.2.6;7.1.7.15.6 Method 6: Applications in the Ene Reaction;167
1.9.1.2.7;7.1.7.15.7 Method 7: Applications in Asymmetric Aldol Cycloadditions;168
1.10;Volume 8: Compounds of Group 1 (Li ··· Cs);170
1.10.1;8.1 Product Class 1: Lithium Compounds;170
1.10.1.1;8.1.29 Dearomatization Reactions Using Organolithiums;170
1.10.1.1.1;8.1.29.1 Intermolecular Dearomatization;170
1.10.1.1.1.1;8.1.29.1.1 Dearomatizing Additions to Aryl Rings Bearing No Further Activation;170
1.10.1.1.1.1.1;8.1.29.1.1.1 Method 1: Dearomatizing Addition to Naphthalenes;170
1.10.1.1.1.1.2;8.1.29.1.1.2 Method 2: Dearomatizing Addition to Condensed Polyaromatics;171
1.10.1.1.1.1.3;8.1.29.1.1.3 Method 3: Dearomatizing Addition to Pyridines and Other Electron-Deficient Heterocycles;172
1.10.1.1.1.2;8.1.29.1.2 Dearomatizing Addition to Activated Aromatic Rings;175
1.10.1.1.1.2.1;8.1.29.1.2.1 Method 1: Activation with 4,5-Dihydrooxazoles;175
1.10.1.1.1.2.1.1;8.1.29.1.2.1.1 Variation 1: Dearomatizing Addition to Naphthyl-4,5-dihydrooxazoles;175
1.10.1.1.1.2.1.2;8.1.29.1.2.1.2 Variation 2: Dearomatizing Addition to Pyridyl-4,5-dihydrooxazoles;177
1.10.1.1.1.2.1.3;8.1.29.1.2.1.3 Variation 3: Dearomatizing Addition to Phenyl-4,5-dihydrooxazoles;178
1.10.1.1.1.2.2;8.1.29.1.2.2 Method 2: Activation with Amides;180
1.10.1.1.1.2.2.1;8.1.29.1.2.2.1 Variation 1: Dearomatizing Addition to Naphthylamides;180
1.10.1.1.1.2.2.2;8.1.29.1.2.2.2 Variation 2: Dearomatizing Addition to Benzamides;181
1.10.1.1.1.2.3;8.1.29.1.2.3 Method 3: Activation with Aldehydes and Ketones;182
1.10.1.1.1.2.3.1;8.1.29.1.2.3.1 Variation 1: Dearomatizing Addition to Naphthyl Ketones;182
1.10.1.1.1.2.3.2;8.1.29.1.2.3.2 Variation 2: Dearomatizing Addition to Acetophenones and Benzaldehydes;182
1.10.1.1.1.2.4;8.1.29.1.2.4 Method 4: Activation with Esters;183
1.10.1.1.1.2.4.1;8.1.29.1.2.4.1 Variation 1: Dearomatizing Addition to Naphthyl Esters;183
1.10.1.1.1.2.4.2;8.1.29.1.2.4.2 Variation 2: Dearomatizing Addition to Benzoates;185
1.10.1.1.1.2.5;8.1.29.1.2.5 Method 5: Activation with Carboxylic Acids;185
1.10.1.1.1.2.6;8.1.29.1.2.6 Method 6: Activation with Sulfones;187
1.10.1.1.1.2.7;8.1.29.1.2.7 Method 7: Activation with Imines;187
1.10.1.1.2;8.1.29.2 Intramolecular Dearomatization (Dearomatizing Cyclization);189
1.10.1.1.2.1;8.1.29.2.1 Dearomatizing Cyclization of Lithiated Amides;189
1.10.1.1.2.1.1;8.1.29.2.1.1 Method 1: Dearomatizing Cyclization of Naphthamides;189
1.10.1.1.2.1.1.1;8.1.29.2.1.1.1 Variation 1: N-Allylnaphthamides;191
1.10.1.1.2.1.1.2;8.1.29.2.1.1.2 Variation 2: Chiral N-Benzylnaphthamides;192
1.10.1.1.2.1.2;8.1.29.2.1.2 Method 2: Dearomatizing Cyclization of Benzamides;192
1.10.1.1.2.1.2.1;8.1.29.2.1.2.1 Variation 1: Asymmetric Dearomatizing Cyclization with Chiral Lithium Amides;194
1.10.1.1.2.1.2.2;8.1.29.2.1.2.2 Variation 2: Stereospecific Dearomatizing Cyclization of (1-Phenylethyl)benzamides;196
1.10.1.1.2.1.2.3;8.1.29.2.1.2.3 Variation 3: Dearomatizing Cyclization of N-Benzoyloxazolidines;197
1.10.1.1.2.1.2.4;8.1.29.2.1.2.4 Variation 4: Photochemical Rearrangements of the Dearomatized Products;198
1.10.1.1.2.1.3;8.1.29.2.1.3 Method 3: Dearomatizing Cyclization of Pyridine- and Quinolinecarboxamides;200
1.10.1.1.2.1.3.1;8.1.29.2.1.3.1 Variation 1: Cyclizations of Lithium Enolates;202
1.10.1.1.2.1.4;8.1.29.2.1.4 Method 4: Dearomatizing Cyclization of Electron-Rich Heterocyclic Amides;204
1.10.1.1.2.1.4.1;8.1.29.2.1.4.1 Variation 1: Pyrrolecarboxamides;204
1.10.1.1.2.1.4.2;8.1.29.2.1.4.2 Variation 2: Thiophenecarboxamides;207
1.10.1.1.2.2;8.1.29.2.2 Dearomatizing Cyclization of Other Lithiated Compounds;210
1.10.1.1.2.2.1;8.1.29.2.2.1 Method 1: Dearomatizing Cyclization of Lithiated Phosphinamides;210
1.10.1.1.2.2.2;8.1.29.2.2.2 Method 2: Dearomatizing Cyclization of Lithiated Azo Compounds;211
1.10.1.1.2.2.3;8.1.29.2.2.3 Method 3: Dearomatizing Cyclization of Lithiated 4,5-Dihydrooxazoles;212
1.10.1.1.2.2.4;8.1.29.2.2.4 Method 4: Dearomatizing Cyclization of Lithiated Sulfones;213
1.10.1.1.2.2.5;8.1.29.2.2.5 Method 5: [2,3]-Sigmatropic Dearomatization of Lithiated Sulfonium Salts;214
1.10.1.1.3;8.1.29.3 Rearrangements Proceeding via Dearomatized Intermediates;214
1.10.1.1.3.1;8.1.29.3.1 Method 1: Arylation of N-Benzylureas;214
1.10.1.1.3.1.1;8.1.29.3.1.1 Variation 1: Pyridylation of Ureas;216
1.10.1.1.3.1.2;8.1.29.3.1.2 Variation 2: Arylation of N-Allylureas;217
1.10.1.1.3.2;8.1.29.3.2 Method 2: Arylation of O-Benzyl Carbamates;218
1.10.1.1.3.3;8.1.29.3.3 Method 3: Arylation of S-Benzyl Thiocarbamates;218
1.10.1.2;8.1.30 Carbolithiation of Carbon–Carbon Multiple Bonds;222
1.10.1.2.1;8.1.30.1 Intermolecular Carbolithiation of C==C Bonds;222
1.10.1.2.1.1;8.1.30.1.1 Method 1: Addition of Alkyllithiums to Alkenes;223
1.10.1.2.1.1.1;8.1.30.1.1.1 Variation 1: Carbolithiation of Styrene Derivatives;223
1.10.1.2.1.1.2;8.1.30.1.1.2 Variation 2: Carbolithiation of 1-Substituted Vinylarenes;226
1.10.1.2.1.1.3;8.1.30.1.1.3 Variation 3: Carbolithiation of Stilbenes;228
1.10.1.2.1.2;8.1.30.1.2 Method 2: Addition of Aryl- and Hetaryllithiums to Alkenes;230
1.10.1.2.1.2.1;8.1.30.1.2.1 Variation 1: Halogen–Lithium Exchange;230
1.10.1.2.1.2.2;8.1.30.1.2.2 Variation 2: Carbolithiation with Lithium Dianions;231
1.10.1.2.2;8.1.30.2 Intramolecular Carbolithiation of C==C Bonds;232
1.10.1.2.2.1;8.1.30.2.1 Method 1: Addition of Alkyllithiums to Alkenes;233
1.10.1.2.2.1.1;8.1.30.2.1.1 Variation 1: Halogen–Lithium Exchange;233
1.10.1.2.2.1.2;8.1.30.2.1.2 Variation 2: Arene-Catalyzed Lithiation;234
1.10.1.2.2.1.3;8.1.30.2.1.3 Variation 3: Tin–Lithium Exchange;237
1.10.1.2.2.1.4;8.1.30.2.1.4 Variation 4: Selenium–Lithium Exchange;239
1.10.1.2.2.2;8.1.30.2.2 Method 2: Addition of Alkenyllithiums to Alkenes;240
1.10.1.2.2.2.1;8.1.30.2.2.1 Variation 1: Halogen–Lithium Exchange;240
1.10.1.2.2.2.2;8.1.30.2.2.2 Variation 2: Carbolithiation of Lithiated Double Bonds Obtained by Halogen–Lithium Exchange;242
1.10.1.2.2.3;8.1.30.2.3 Method 3: Addition of Aryl- and Hetaryllithiums to Alkenes;244
1.10.1.2.2.3.1;8.1.30.2.3.1 Variation 1: Formation of Five-Membered Rings;244
1.10.1.2.2.3.2;8.1.30.2.3.2 Variation 2: Formation of Six-Membered Rings;248
1.10.1.2.3;8.1.30.3 Intermolecular Carbolithiation of C==C Bonds;250
1.10.1.2.3.1;8.1.30.3.1 Method 1: Addition of Alkyl- and Aryllithiums to Alkynes;251
1.10.1.2.4;8.1.30.4 Intramolecular Carbolithiation of C==C Bonds;253
1.10.1.2.4.1;8.1.30.4.1 Method 1: Addition of Alkyllithiums to Alkynes;253
1.10.1.2.4.1.1;8.1.30.4.1.1 Variation 1: Deprotonation;254
1.10.1.2.4.1.2;8.1.30.4.1.2 Variation 2: Tin–Lithium Exchange;255
1.10.1.2.4.1.3;8.1.30.4.1.3 Variation 3: Selenium–Lithium Exchange;257
1.10.1.2.4.1.4;8.1.30.4.1.4 Variation 4: Halogen–Lithium Exchange;257
1.10.1.2.4.2;8.1.30.4.2 Method 2: Addition of Alkenyllithiums to Alkynes;258
1.10.1.2.4.2.1;8.1.30.4.2.1 Variation 1: Cyclization of Vinyllithiums onto Alkynes;258
1.10.1.2.4.2.2;8.1.30.4.2.2 Variation 2: Cyclization of Vinyllithiums onto Arynes;260
1.10.1.2.4.3;8.1.30.4.3 Method 3: Addition of Aryl- and Hetaryllithiums to Alkynes;261
1.10.1.2.4.3.1;8.1.30.4.3.1 Variation 1: Cyclization of Aryllithiums onto Alkynes;262
1.10.1.2.4.3.2;8.1.30.4.3.2 Variation 2: Cyclization of Aryllithiums onto Arynes;263
1.10.1.2.5;8.1.30.5 Inter- and Intramolecular Addition of Alkyllithiums to Arenes;265
1.10.1.2.5.1;8.1.30.5.1 Method 1: Intermolecular Dearomatizing Addition of Alkyllithiums to Arenes;265
1.10.1.2.5.2;8.1.30.5.2 Method 2: Intramolecular Dearomatizing Addition of Alkyllithiums to Arenes;266
1.10.1.2.6;8.1.30.6 Cascade Reactions;268
1.10.1.2.6.1;8.1.30.6.1 Method 1: Tandem Intermolecular–Intramolecular Carbolithiations;268
1.10.1.2.6.2;8.1.30.6.2 Method 2: Tandem Aminolithiation–Carbolithiation;270
1.10.1.2.7;8.1.30.7 Intermolecular Enantioselective Addition of Organolithiums to Alkenes;271
1.10.1.2.7.1;8.1.30.7.1 Method 1: Intermolecular Addition of Alkyllithiums to Alkenes;271
1.10.1.2.8;8.1.30.8 Intramolecular Enantioselective Addition of Organolithiums to Alkenes;274
1.10.1.2.8.1;8.1.30.8.1 Method 1: Intramolecular Addition of Alkyllithiums to Alkenes;275
1.10.1.2.8.2;8.1.30.8.2 Method 2: Intramolecular Addition of Aryllithiums to Alkenes;276
1.11;Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms;284
1.11.1;16.14 Product Class 14: Pyrazines;284
1.11.1.1;16.14.5 Pyrazines;284
1.11.1.1.1;16.14.5.1 Synthesis by Ring-Closure Reactions;287
1.11.1.1.1.1;16.14.5.1.1 By Formation of Four N--C Bonds;287
1.11.1.1.1.1.1;16.14.5.1.1.1 Fragments C--C, C--C, and Two N Fragments;287
1.11.1.1.1.1.1.1;16.14.5.1.1.1.1 Method 1: From a 1,2-Bifunctional Compound and Ammonia or Ammonium;287
1.11.1.1.1.2;16.14.5.1.2 By Formation of Three N--C Bonds;288
1.11.1.1.1.2.1;16.14.5.1.2.1 Fragments N--C--C, C--C, and N;288
1.11.1.1.1.2.1.1;16.14.5.1.2.1.1 Method 1: From an a-Amino Ketone, an a-Hydroxy Ketone, and Ammonium Acetate;288
1.11.1.1.1.3;16.14.5.1.3 By Formation of Two N--C Bonds;288
1.11.1.1.1.3.1;16.14.5.1.3.1 Fragments N--C--C--N and C--C;288
1.11.1.1.1.3.1.1;16.14.5.1.3.1.1 Method 1: From Alkane-1,2-diamines;288
1.11.1.1.1.3.1.2;16.14.5.1.3.1.2 Method 2: From Alkene-1,2-diamines;292
1.11.1.1.1.3.1.3;16.14.5.1.3.1.3 Method 3: From a-Amino Amides;293
1.11.1.1.1.3.1.4;16.14.5.1.3.1.4 Method 4: From a-Amino Nitriles;294
1.11.1.1.1.3.1.5;16.14.5.1.3.1.5 Method 5: From 1,4-Diazabutadienes;295
1.11.1.1.1.3.2;16.14.5.1.3.2 Fragments N--C--C and N--C--C;296
1.11.1.1.1.3.2.1;16.14.5.1.3.2.1 Method 1: By Cyclodimerization of Azirines;296
1.11.1.1.1.3.2.2;16.14.5.1.3.2.2 Method 2: By Self-Condensation;297
1.11.1.1.1.3.2.3;16.14.5.1.3.2.3 Method 3: By Condensation of Two Different a-Amino Ketones or Cyanides;299
1.11.1.1.1.3.3;16.14.5.1.3.3 Fragments C--C--N--C--C and N;302
1.11.1.1.1.3.3.1;16.14.5.1.3.3.1 Method 1: From ß,ß'-Difunctional Secondary Amines (or Amides) and Ammonia;302
1.11.1.1.1.4;16.14.5.1.4 By Formation of One N--C Bond;303
1.11.1.1.1.4.1;16.14.5.1.4.1 Fragment N--C--C--N--C--C;303
1.11.1.1.1.4.1.1;16.14.5.1.4.1.1 Method 1: Intramolecular Cyclization of a N--C--C--N--C--C Fragment;303
1.11.1.1.2;16.14.5.2 Synthesis by Ring Transformation;304
1.11.1.1.2.1;16.14.5.2.1 Method 1: Ring Transformation of Imidazoles;304
1.11.1.1.3;16.14.5.3 Aromatization;305
1.11.1.1.3.1;16.14.5.3.1 Method 1: Dehydrogenation of Dihydropyrazines;305
1.11.1.1.3.2;16.14.5.3.2 Method 2: By Elimination;306
1.11.1.1.4;16.14.5.4 Synthesis by Substituent Modification;307
1.11.1.1.4.1;16.14.5.4.1 Substitution of Existing Substituents;307
1.11.1.1.4.1.1;16.14.5.4.1.1 Of Hydrogen;307
1.11.1.1.4.1.1.1;16.14.5.4.1.1.1 Method 1: Metalation;307
1.11.1.1.4.1.1.2;16.14.5.4.1.1.2 Method 2: Acylation, Amidation, Alkylation, and Arylation;309
1.11.1.1.4.1.1.2.1;16.14.5.4.1.1.2.1 Variation 1: Homolytic Acylation and Amidation;309
1.11.1.1.4.1.1.2.2;16.14.5.4.1.1.2.2 Variation 2: Direct Alkylation and Arylation;310
1.11.1.1.4.1.1.2.3;16.14.5.4.1.1.2.3 Variation 3: Alkylation, Arylation, and Alkenylation of Pyrazine N-Oxides;311
1.11.1.1.4.1.1.3;16.14.5.4.1.1.3 Method 3: Halogenation;313
1.11.1.1.4.1.1.3.1;16.14.5.4.1.1.3.1 Variation 1: Halogenation of Pyrazinamines;313
1.11.1.1.4.1.1.3.2;16.14.5.4.1.1.3.2 Variation 2: Halogenation of Pyrazinols;315
1.11.1.1.4.1.1.3.3;16.14.5.4.1.1.3.3 Variation 3: Deoxidative Chlorination of Pyrazine N-Oxides;316
1.11.1.1.4.1.1.4;16.14.5.4.1.1.4 Method 4: Nitration;317
1.11.1.1.4.1.2;16.14.5.4.1.2 Of Metals;317
1.11.1.1.4.1.3;16.14.5.4.1.3 Of Carbon Functionalities;319
1.11.1.1.4.1.3.1;16.14.5.4.1.3.1 Method 1: Decarboxylation, Decyanation, and Debenzylation;319
1.11.1.1.4.1.4;16.14.5.4.1.4 Of Halogen;320
1.11.1.1.4.1.4.1;16.14.5.4.1.4.1 Method 1: Reduction;320
1.11.1.1.4.1.4.2;16.14.5.4.1.4.2 Method 2: Metalation;321
1.11.1.1.4.1.4.3;16.14.5.4.1.4.3 Method 3: Alkylation, Arylation, and Related Reactions;323
1.11.1.1.4.1.4.3.1;16.14.5.4.1.4.3.1 Variation 1: Grignard Reaction and Related Reactions;323
1.11.1.1.4.1.4.3.2;16.14.5.4.1.4.3.2 Variation 2: Suzuki–Miyaura Cross-Coupling Reaction and Related Reactions;324
1.11.1.1.4.1.4.3.3;16.14.5.4.1.4.3.3 Variation 3: Negishi Cross-Coupling Reaction and Related Reactions;332
1.11.1.1.4.1.4.3.4;16.14.5.4.1.4.3.4 Variation 4: Stille Cross-Coupling Reaction and Related Reactions;333
1.11.1.1.4.1.4.3.5;16.14.5.4.1.4.3.5 Variation 5: Other Cross-Coupling Reactions for Arylation;335
1.11.1.1.4.1.4.4;16.14.5.4.1.4.4 Method 4: Alkenylation and Related Reactions;335
1.11.1.1.4.1.4.5;16.14.5.4.1.4.5 Method 5: Alkynylation and Related Reactions;338
1.11.1.1.4.1.4.6;16.14.5.4.1.4.6 Method 6: Functionalized Methylation;339
1.11.1.1.4.1.4.7;16.14.5.4.1.4.7 Method 7: Cyanation and Carbonylation;341
1.11.1.1.4.1.4.8;16.14.5.4.1.4.8 Method 8: Halogenation;343
1.11.1.1.4.1.4.9;16.14.5.4.1.4.9 Method 9: Hydroxylation, Alkoxylation, and Sulfanylation;343
1.11.1.1.4.1.4.10;16.14.5.4.1.4.10 Method 10: Amination, Azidation, and Phosphonation;347
1.11.1.1.4.1.5;16.14.5.4.1.5 Of Oxygen and Sulfur Functionalities;351
1.11.1.1.4.1.5.1;16.14.5.4.1.5.1 Method 1: Deoxygenation of N-Oxides and Reductive Removal of Oxygen Functionalities;351
1.11.1.1.4.1.5.2;16.14.5.4.1.5.2 Method 2: Halogenation;352
1.11.1.1.4.1.5.3;16.14.5.4.1.5.3 Method 3: O-Sulfonylation;353
1.11.1.1.4.1.5.4;16.14.5.4.1.5.4 Method 4: Alkylation and Arylation;354
1.11.1.1.4.1.6;16.14.5.4.1.6 Of Nitrogen Functionalities;356
1.11.1.1.4.1.6.1;16.14.5.4.1.6.1 Method 1: Halopyrazines, Pyrazinols, and Methoxypyrazines from Aminopyrazines;32
1.11.1.1.4.2;16.14.5.4.2 Addition Reactions;356
1.11.1.1.4.2.1;16.14.5.4.2.1 Method 1: N-Alkylation and N-Arylation;356
1.11.1.1.4.2.2;16.14.5.4.2.2 Method 2: N-Oxidation;358
1.11.1.1.4.3;16.14.5.4.3 Rearrangement of Substituents;359
1.11.1.1.4.3.1;16.14.5.4.3.1 Method 1: Hofmann or Curtius Rearrangement;359
1.11.1.1.4.4;16.14.5.4.4 Modification of Substituents;359
1.11.1.1.4.4.1;16.14.5.4.4.1 Method 1: Degradation of Condensed Pyrazines;359
1.11.1.1.4.4.2;16.14.5.4.4.2 Method 2: Modification of Carbon Substituents;361
1.11.1.1.4.4.3;16.14.5.4.4.3 Method 3: Modification of Nitrogen and Chalcogen Substituents;365
1.12;Volume 17: Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles;376
1.12.1;17.3 Product Class 3: Six-Membered Hetarenes with More than Three Heteroatoms;376
1.12.1.1;17.3.4 Six-Membered Hetarenes with More than Three Heteroatoms;376
1.12.1.1.1;17.3.4.1 1,2,3,4-Tetrazines;376
1.12.1.1.1.1;17.3.4.1.1 Method 1: Synthesis of 1,2,3,4-Tetrazine N-Oxides;377
1.12.1.1.1.1.1;17.3.4.1.1.1 Variation 1: Via Nitration;377
1.12.1.1.2;17.3.4.2 1,2,3,5-Tetrazines;379
1.12.1.1.3;17.3.4.3 1,2,4,5-Tetrazines;379
1.12.1.1.3.1;17.3.4.3.1 Synthesis by Ring-Closure Reactions;380
1.12.1.1.3.1.1;17.3.4.3.1.1 By Formation of Four N--C Bonds;380
1.12.1.1.3.1.1.1;17.3.4.3.1.1.1 Fragments N--N, N--N, and Two C Fragments;380
1.12.1.1.3.1.1.1.1;17.3.4.3.1.1.1.1 Method 1: Dimerization of Activated Hydrazidic Acid Derivatives;380
1.12.1.1.3.1.1.1.1.1;17.3.4.3.1.1.1.1.1 Variation 1: From Nitriles;380
1.12.1.1.3.1.1.1.1.2;17.3.4.3.1.1.1.1.2 Variation 2: From Carboxylic Acid Derivatives;383
1.12.1.1.3.1.2;17.3.4.3.1.2 By Formation of Two N--C Bonds;385
1.12.1.1.3.1.2.1;17.3.4.3.1.2.1 Fragments C--N--N--C and N--N;385
1.12.1.1.3.1.2.1.1;17.3.4.3.1.2.1.1 Method 1: Oxidation of Dihydrotetrazines;385
1.12.1.1.3.2;17.3.4.3.2 Aromatization;385
1.12.1.1.3.3;17.3.4.3.3 Synthesis by Substituent Modification;385
1.12.1.1.3.3.1;17.3.4.3.3.1 Substitution of Existing Substituents;385
1.12.1.1.3.3.1.1;17.3.4.3.3.1.1 Of Heteroatoms;385
1.12.1.1.3.3.1.1.1;17.3.4.3.3.1.1.1 Method 1: Substitution of Halogen Substituents;386
1.12.1.1.3.3.1.1.1.1;17.3.4.3.3.1.1.1.1 Variation 1: Nucleophilic Aromatic Substitution;386
1.12.1.1.3.3.1.1.1.2;17.3.4.3.3.1.1.1.2 Variation 2: Palladium-Catalyzed Coupling;392
1.12.1.1.3.3.1.1.2;17.3.4.3.3.1.1.2 Method 2: Substitution of Sulfur Substituents;393
1.12.1.1.3.3.1.1.2.1;17.3.4.3.3.1.1.2.1 Variation 1: Nucleophilic Substitution;393
1.12.1.1.3.3.1.1.2.2;17.3.4.3.3.1.1.2.2 Variation 2: Palladium-Catalyzed Coupling;393
1.12.1.1.3.3.1.1.3;17.3.4.3.3.1.1.3 Method 3: Substitution of Nitrogen Substituents;395
1.12.1.1.3.3.2;17.3.4.3.3.2 Modification of Substituents;401
1.13;Volume 19: Three Carbon--Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives;408
1.13.1;19.5 Product Class 5: Nitriles;408
1.13.1.1;19.5.16 Asymmetric Synthesis of Nitriles;408
1.13.1.1.1;19.5.16.1 Introduction of the Cyano Group by Addition to a Carbonyl Group;408
1.13.1.1.1.1;19.5.16.1.1 Method 1: Catalytic Asymmetric Cyanation of Aldehydes;408
1.13.1.1.1.1.1;19.5.16.1.1.1 Variation 1: Use of Enzymes;408
1.13.1.1.1.1.2;19.5.16.1.1.2 Variation 2: Use of Chiral Titanium Complexes as Catalysts;409
1.13.1.1.1.1.3;19.5.16.1.1.3 Variation 3: Use of Chiral Aluminum Complexes as Catalysts;414
1.13.1.1.1.1.4;19.5.16.1.1.4 Variation 4: Use of Chiral Yttrium Complexes as Catalysts;417
1.13.1.1.1.1.5;19.5.16.1.1.5 Variation 5: Use of Chiral Ruthenium Complexes as Catalysts;418
1.13.1.1.1.1.6;19.5.16.1.1.6 Variation 6: Use of Chiral Boron-Based Catalysts;419
1.13.1.1.1.1.7;19.5.16.1.1.7 Variation 7: Use of Chiral Vanadium-Based Catalysts;420
1.13.1.1.1.1.8;19.5.16.1.1.8 Variation 8: Use of Chiral Bases as Catalysts;422
1.13.1.1.1.2;19.5.16.1.2 Method 2: Catalytic Asymmetric Cyanation of Ketones;425
1.13.1.1.1.2.1;19.5.16.1.2.1 Variation 1: Use of Enzymes;425
1.13.1.1.1.2.2;19.5.16.1.2.2 Variation 2: Use of Chiral Titanium Complexes as Catalysts;426
1.13.1.1.1.2.3;19.5.16.1.2.3 Variation 3: Use of Chiral Aluminum Complexes as Catalysts;427
1.13.1.1.1.2.4;19.5.16.1.2.4 Variation 4: Use of a Chiral Gadolinium Complex as Catalyst;430
1.13.1.1.1.2.5;19.5.16.1.2.5 Variation 5: Use of Chiral Ruthenium Complexes as Catalysts;430
1.13.1.1.1.2.6;19.5.16.1.2.6 Variation 6: Use of Chiral Organic Salts;431
1.13.1.1.1.2.7;19.5.16.1.2.7 Variation 7: Use of Chiral Organocatalysts;433
1.13.1.1.2;19.5.16.2 Introduction of the Cyano Group by Addition to an Imino Group;437
1.13.1.1.2.1;19.5.16.2.1 Asymmetric Synthesis of a-Aminonitriles Derived from Aldimines;437
1.13.1.1.2.1.1;19.5.16.2.1.1 Method 1: Asymmetric Strecker Reactions with Chiral Auxiliaries;437
1.13.1.1.2.1.1.1;19.5.16.2.1.1.1 Variation 1: Use of Chiral Sulfinamides;437
1.13.1.1.2.1.1.2;19.5.16.2.1.1.2 Variation 2: Use of Chiral Hydrazones;438
1.13.1.1.2.1.2;19.5.16.2.1.2 Method 2: Catalytic Asymmetric Cyanation of Aldimines;439
1.13.1.1.2.1.2.1;19.5.16.2.1.2.1 Variation 1: Use of Chiral Aluminum Complexes as Catalysts;32
1.13.1.1.2.1.2.2;19.5.16.2.1.2.2 Variation 2: Use of Chiral Titanium Complexes as Catalysts;441
1.13.1.1.2.1.2.3;19.5.16.2.1.2.3 Variation 3: Use of Chiral Lanthanide Complexes as Catalysts;443
1.13.1.1.2.1.2.4;19.5.16.2.1.2.4 Variation 4: Use of Chiral Thioureas as Catalysts;32
1.13.1.1.2.1.2.5;19.5.16.2.1.2.5 Variation 5: Use of Chiral BINOL–Phosphoric Acids as Catalysts;446
1.13.1.1.2.1.2.6;19.5.16.2.1.2.6 Variation 6: Use of Chiral Quaternary Ammonium Salts as Catalysts;32
1.13.1.1.2.1.2.7;19.5.16.2.1.2.7 Variation 7: Use of a Chiral Bisformamide as Catalyst;449
1.13.1.1.2.1.2.8;19.5.16.2.1.2.8 Variation 8: Use of a Chiral N,N'-Dioxide as Catalyst;450
1.13.1.1.2.2;19.5.16.2.2 Asymmetric Synthesis of a-Aminonitriles Derived from Ketimines;451
1.13.1.1.2.2.1;19.5.16.2.2.1 Method 1: Asymmetric Strecker Reactions with Chiral Auxiliaries;451
1.13.1.1.2.2.1.1;19.5.16.2.2.1.1 Variation 1: Use of Chiral Sulfinamides;451
1.13.1.1.2.2.2;19.5.16.2.2.2 Method 2: Catalytic Asymmetric Cyanation of Ketimines;452
1.13.1.1.2.2.2.1;19.5.16.2.2.2.1 Variation 1: Use of Chiral Thioureas as Catalysts;452
1.13.1.1.2.2.2.2;19.5.16.2.2.2.2 Variation 2: Use of Chiral Titanium Complexes as Catalysts;453
1.13.1.1.2.2.2.3;19.5.16.2.2.2.3 Variation 3: Use of Chiral Gadolinium Complexes as Catalysts;454
1.13.1.1.2.2.2.4;19.5.16.2.2.2.4 Variation 4: Use of Chiral N,N'-Dioxides as Catalysts;455
1.13.1.1.2.2.2.5;19.5.16.2.2.2.5 Variation 5: Use of Chiral Sodium 1,1'-Binaphthalene-2,2'-diyl Phosphate as Catalyst;457
1.13.1.1.3;19.5.16.3 Introduction of the Cyano Group by Conjugate Addition;458
1.13.1.1.3.1;19.5.16.3.1 Method 1: Use of a Chiral Auxiliary;459
1.13.1.1.3.2;19.5.16.3.2 Method 2: Use of Chiral Aluminum Complexes as Catalysts;460
1.13.1.1.3.3;19.5.16.3.3 Method 3: Use of Chiral Gadolinium Complexes as Catalysts;461
1.13.1.1.3.4;19.5.16.3.4 Method 4: Use of Chiral Strontium Complexes as Catalysts;465
1.13.1.1.3.5;19.5.16.3.5 Method 5: Use of Chiral Titanium Complexes as Catalysts;466
1.13.1.1.3.6;19.5.16.3.6 Method 6: Use of Chiral Ruthenium Complexes as Catalysts;467
1.13.1.1.3.7;19.5.16.3.7 Method 7: Use of Chiral Organic Salts;468
1.13.1.1.4;19.5.16.4 Introduction of the Cyano Group by Hydrocyanation of Alkenes;471
1.13.1.1.4.1;19.5.16.4.1 Method 1: Use of Chiral Nickel Complexes as Catalysts;471
1.14;Volume 27: Heteroatom Analogues of Aldehydes and Ketones;476
1.14.1;27.15 Product Class 15: Oximes;476
1.14.1.1;27.15.1 Synthesis of Product Class 15;476
1.14.1.1.1;27.15.1.1 Method 1: Condensation of Carbonyl Compounds and Hydroxylamine;476
1.14.1.1.2;27.15.1.2 Method 2: Nitrosation;477
1.14.1.1.2.1;27.15.1.2.1 Variation 1: Electrophilic Nitrosation of Active Methylene Compounds;478
1.14.1.1.2.2;27.15.1.2.2 Variation 2: Electrophilic Nitrosation of Alkenes;479
1.14.1.1.2.3;27.15.1.2.3 Variation 3: Radical Nitrosation;480
1.14.1.1.3;27.15.1.3 Method 3: Oxidation of Amino Compounds;481
1.14.1.1.3.1;27.15.1.3.1 Variation 1: Oxidation of Hydroxylamines;481
1.14.1.1.3.2;27.15.1.3.2 Variation 2: Oxidation of Primary Amines;482
1.14.1.1.4;27.15.1.4 Method 4: Reduction of Nitro and Nitroso Compounds;483
1.14.1.1.4.1;27.15.1.4.1 Variation 1: Reduction of Nitroalkanes;483
1.14.1.1.4.2;27.15.1.4.2 Variation 2: Reduction of Conjugated Nitroalkenes;485
1.14.1.1.4.3;27.15.1.4.3 Variation 3: Reduction of gem-Chloronitroso Compounds;485
1.14.1.1.5;27.15.1.5 Method 5: Additional Methods;486
1.14.1.2;27.15.2 Applications of Product Class 15 in Organic Synthesis;488
1.14.1.2.1;27.15.2.1 Method 1: Formal Substitution with Cleavage of the O--N Bond;488
1.14.1.2.1.1;27.15.2.1.1 Variation 1: Via Oxidative Addition to Transition Metals;489
1.14.1.2.1.2;27.15.2.1.2 Variation 2: With Nucleophiles;491
1.14.1.2.1.3;27.15.2.1.3 Variation 3: Via Radical Intermediates;494
1.14.1.2.2;27.15.2.2 Method 2: Formal Elimination;497
1.14.1.2.2.1;27.15.2.2.1 Variation 1: Generation of 1,3-Dipoles;497
1.14.1.2.2.2;27.15.2.2.2 Variation 2: Conversion into Nitriles;499
1.14.1.2.2.3;27.15.2.2.3 Variation 3: Regeneration of Carbonyl Compounds;501
1.14.1.2.3;27.15.2.3 Method 3: Addition Reactions;502
1.14.1.2.3.1;27.15.2.3.1 Variation 1: Reduction to Primary Amines;502
1.14.1.2.3.2;27.15.2.3.2 Variation 2: Reduction to Hydroxylamines;503
1.14.1.2.3.3;27.15.2.3.3 Variation 3: With Radicals;504
1.14.1.2.3.4;27.15.2.3.4 Variation 4: With Carbon Nucleophiles;505
1.14.1.2.4;27.15.2.4 Method 4: Rearrangements;506
1.14.1.2.4.1;27.15.2.4.1 Variation 1: Beckmann Rearrangement;506
1.14.1.2.4.2;27.15.2.4.2 Variation 2: Neber Reaction;509
1.14.1.2.5;27.15.2.5 Method 5: Reactions with Retention of the Oxime Moiety;510
1.14.1.2.5.1;27.15.2.5.1 Variation 1: E/Z-Isomerization;510
1.14.1.2.5.2;27.15.2.5.2 Variation 2: a-Alkylation;511
1.14.1.2.5.3;27.15.2.5.3 Variation 3: Radical Reactions of Sulfonyloxime Ethers;512
1.14.1.2.6;27.15.2.6 Method 6: Directing Group for C--H Functionalization;513
1.14.1.2.7;27.15.2.7 Method 7: Additional Reactions;517
1.15;Author Index;532
1.16;Abbreviations;564
1.17;List of All Volumes;570