E-Book, Englisch, Band 1, eBook
An Introduction Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology
E-Book, Englisch, Band 1, eBook
Reihe: Springer Series in Synergetics
ISBN: 978-3-642-96469-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. Goal.- 1.1 Order and Disorder: Some Typical Phenomena.- 1.2 Some Typical Problems and Difficulties.- 1.3 How We Shall Proceed.- 2. Probability.- 2.1 Object of Our Investigations: The Sample Space.- 2.2 Random Variables.- 2.3 Probability.- 2.4 Distribution.- 2.5 Random Variables with Densities.- 2.6 Joint Probability.- 2.7 Mathematical Expectation E(X), and Moments.- 2.8 Conditional Probabilities.- 2.9 Independent and Dependent Random Variables.- 2.10*Generating Functions and Characteristic Functions.- 2.11 A Special Probability Distribution: Binomial Distribution.- 2.12 The Poisson Distribution.- 2.13 The Normal Distribution (Gaussian Distribution).- 2.14 Stirling’s Formula.- 2.15*Central Limit Theorem.- 3. Information.- 3.1 Some Basic Ideas.- 3.2* Information Gain: An Illustrative Derivation.- 3.3 Information Entropy and Constraints.- 3.4 An Example from Physics: Thermodynamics.- 3.5* An Approach to Irreversible Thermodynamics.- 3.6 Entropy—Curse of Statistical Mechanics?.- 4. Chance.- 4.1 A Model of Brownian Movement.- 4.2 The Random Walk Model and Its Master Equation.- 4.3* Joint Probability and Paths. Markov Processes. The Chapman-Kolmogorov Equation. Path Integrals.- 4.4* How to Use Joint Probabilities. Moments. Characteristic Function. Gaussian Processes.- 4.5 The Master Equation.- 4.6 Exact Stationary Solution of the Master Equation for Systems in Detailed Balance.- 4.7* The Master Equation with Detailed Balance. Symmetrization, Eigenvalues and Eigenstates.- 4.8* Kirchhoff’s Method of Solution of the Master Equation.- 4.9* Theorems about Solutions of the Master Equation.- 4.10 The Meaning of Random Processes. Stationary State, Fluctuations, Recurrence Time.- 4.11*Master Equation and Limitations of Irreversible Thermodynamics.- 5. Necessity.- 5.1 DynamicProcesses.- 5.2* Critical Points and Trajectories in a Phase Plane. Once Again Limit Cycles.- 5.3* Stability.- 5.4 Examples and Exercises on Bifurcation and Stability.- 5.5* Classification of Static Instabilities, or an Elementary Approach to Thorn’s Theory of Catastrophes.- 6. Chance and Necessity.- 6.1 Langevin Equations: An Example.- 6.2* Reservoirs and Random Forces.- 6.3 The Fokker-Planck Equation.- 6.4 Some Properties and Stationary Solutions of the Fokker-Planck Equation.- 6.5 Time-Dependent Solutions of the Fokker-Planck Equation.- 6.6* Solution of the Fokker-Planck Equation by Path Integrals.- 6.7 Phase Transition Analogy.- 6.8 Phase Transition Analogy in Continuous Media: Space-Dependent Order Parameter.- 7. Self-Organization.- 7.1 Organization.- 7.2 Self-Organization.- 7.3 The Role of Fluctuations: Reliability or Adaptibility? Switching.- 7.4* Adiabatic Elimination of Fast Relaxing Variables from the Fokker-Planck Equation.- 7.5* Adiabatic Elimination of Fast Relaxing Variables from the Master Equation.- 7.6 Self-Organization in Continuously Extended Media. An Outline of the Mathematical Approach.- 7.7* Generalized Ginzburg-Landau Equations for Nonequilibrium Phase Transitions.- 7.8* Higher-Order Contributions to Generalized Ginzburg-Landau Equations.- 7.9* Scaling Theory of Continuously Extended Nonequilibrium Systems.- 7.10*Soft-Mode Instability.- 7.1 l*Hard-Mode Instability.- 8. Physical Systems.- 8.1 Cooperative Effects in the Laser: Self-Organization and Phase Transition.- 8.2 The Laser Equations in the Mode Picture.- 8.3 The Order Parameter Concept.- 8.4 The Single-Mode Laser.- 8.5 The Multimode Laser.- 8.6 Laser with Continuously Many Modes. Analogy with Superconductivity.- 8.7 First-Order Phase Transitions of the Single-Mode Laser.- 8.8 Hierarchyof Laser Instabilities and Ultrashort Laser Pulses.- 8.9 Instabilities in Fluid Dynamics: The Bénard and Taylor Problems.- 8.10 The Basic Equations.- 8.11 Damped and Neutral Solutions (R ? Rc).- 8.12 Solution Near R = Rc (Nonlinear Domain). Effective Langevin Equations.- 8.13 The Fokker-Planck Equation and Its Stationary Solution.- 8.14 A Model for the Statistical Dynamics of the Gunn Instability Near Threshold.- 8.15 Elastic Stability: Outline of Some Basic Ideas.- 9. Chemical and Biochemical Systems.- 9.1 Chemical and Biochemical Reactions.- 9.2 Deterministic Processes, Without Diffusion, One Variable.- 9.3 Reaction and Diffusion Equations.- 9.4 Reaction-Diffusion Model with Two or Three Variables: The Brusselator and the Oregonator.- 9.5 Stochastic Model for a Chemical Reaction Without Diffusion. Birth and Death Processes. One Variable.- 9.6 Stochastic Model for a Chemical Reaction with Diffusion. One Variable.- 9.7* Stochastic Treatment of the Brusselator Close to Its Soft-Mode Instability.- 9.8 Chemical Networks.- 10. Applications to Biology.- 10.1 Ecology, Population-Dynamics.- 10.2 Stochastic Models for a Predator-Prey System.- 10.3 A Simple Mathematical Model for Evolutionary Processes.- 10.4 A Model for Morphogenesis.- 10.5 Order Parameters and Morphogenesis.- 10.6 Some Comments on Models of Morphogenesis.- 11. Sociology: A Stochastic Model for the Formation of Public Opinion.- 12. Chaos.- 12.1 What is Chaos?.- 12.2 The Lorenz Model. Motivation and Realization.- 12.3 How Chaos Occurs.- 12.4 Chaos and the Failure of the Slaving Principle.- 12.5 Correlation Function and Frequency Distribution.- 12.6 Further Examples of Chaotic Motion.- 13. Some Historical Remarks and Outlook.- References, Further Reading and Comments.