Hadfi / Anthony / Bai | PRICAI 2024: Trends in Artificial Intelligence | Buch | 978-981-960121-9 | sack.de

Buch, Englisch, 471 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 744 g

Reihe: Lecture Notes in Artificial Intelligence

Hadfi / Anthony / Bai

PRICAI 2024: Trends in Artificial Intelligence

21st Pacific Rim International Conference on Artificial Intelligence, PRICAI 2024, Kyoto, Japan, November 18-24, 2024, Proceedings, Part III

Buch, Englisch, 471 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 744 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-981-960121-9
Verlag: Springer Nature Singapore


The five-volume proceedings set LNAI 15281-15285, constitutes the refereed proceedings of the 21st Pacific Rim International Conference on Artificial Intelligence, PRICAI 2024, held in Kyoto, Japan, in November 18–24, 2024.

The 145 full papers and 35 short papers included in this book were carefully reviewed and selected from 543 submissions.

The papers are organized in the following topical sections:

Part I: Machine Learning, Deep Learning

Part II: Deep Learning, Federated Learning, Generative AI, Natural Language Processing, Large Language Models,

Part III: Large Language Models, Computer Vision

Part IV: Computer Vision, Autonomous Driving, Agents and Multiagent Systems, Knowledge Graphs, Speech Processing, Optimization

Part V: Optimization, General Applications, Medical Applications, Theoretical Foundations of AI
Hadfi / Anthony / Bai PRICAI 2024: Trends in Artificial Intelligence jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Large Language Models.

.- MLRQA: A Dataset with Multimodal Logical Reasoning Challenges.

.- Fame Bias – Large Language Models Change Their Judgement Depending on Personal Name.

.- Distributed Population-based Simultaneous Perturbation Stochastic Approximation for Fine-Tuning Large Language Models.

.- Transformer-Mamba-based Trident-Branch RGB-T Tracker.

.- MMAT: Multi-scale Multi-Attention Transformer for Fine-grained Wild Fungi Visual Classification.

.- Enhancing Parameter-Efficient Transformers with Contrastive Syntax and Regularized.- Dropout for Neural Machine Translation.

.- Computer Vision.

.- DB-FSCIL: Few-Shot Class-Incremental Learning Using Dual Bridges.

.- GMMotion: Neighborhood Information Matters for Online Multi-Pedestrian Tracking.

.- Predicting Plain Text Imageability for Faithful Prompt-Conditional Image Generation.

.- BFNet: A Bi-Frequency Fusion Semantic Segmentation Network for High-Resolution Remote Sensing Images.

.- An improved model of detecting ground military targets from horizontal view.

.- A Copy-Paste Data Augmentation Method For Urban Tree Detection.

.- A Novel Geometric-Encoded and Feature-Fused Model for Pressure Distribution Prediction on Airfoils.

.- Artificial Intelligence-Guided Fully-Automatic Renal Segmentation.

.- Integrating Vision-Tool to Enhance Visual-Question-Answering in Special Domains.

.- AGLTN: Attention-Based Global-Local Transformer Network for Ultra-High Resolution Images.

.- GAMF-Net: A Lightweight Network for Semantic Segmentation of Land Cover Recognition in Open-Pit Coal Mining Areas.

.- Action Recognition Based on Multi-Perspective Feature Excitation.

.- HQPAFT: Enhancing Low-Light Images with High-Quality Priors and Advanced Feature Transformations Using Only Normal Light Images.

.- A Reversible Data Hiding in Encryption Domain for JPEG Image Based on Controllable Ciphertext Range of Paillier Homomorphic Encryption Algorithm.

.- BEVTemp: Enhancing Vision-based Roadside 3D Object Detection with Temporal Information.

.- CPNet: Controllable Point Cloud Generation Network Using Part-Level Information.

.- AffViT: Fast Affine Medical Image Registration with Convolutional Vision Transformer.

.- An Instance and Cloud Masks Guided Multi-source Fusion Network for Remote Sensing Object Detection.

.- Image Gradient-Aided Photometric Stereo Network.

.- Enhancing Object Detection Accuracy with Hybrid Supervision and Trans-stage Interaction.

.- Adaptive Threshold-Driven Semi-Supervised Facial Expression Recognition.

.- 3D-HRFC: 3D-Aware Image Generation at High Resolution with Faster Convergence.

.- AF-SSD:Self-Attention Fusion Sampling and Fuzzy Classification for Enhanced Small Object Detection.

.- A Facial Expression Recognition Model Based on a Hybrid Attention Mechanism with. Multiple Information Spaces and Channels.

.- A Meta-Learning Method for Generalizable Face Forgery Detection.

.- Data-Free Quantization of Vision Transformers through Perturbation Aware Image Synthesis.

.- HMM-VMamba: High-order Morphological Method Vision Mamba for Medical Image Segmentation.

.- Evaluating Subtle Positive–Negative Facial Expression Transitions for Monitoring Changes in Personal Internal States.

.- Image Generation Method for Addressing Class Imbalance in Small-Sample Pulsar Candidates.

.- Efficient Matrix-Based Multi-View Projection Features Combined for Multi-Modal 3D Semantic Segmentation.

.- Enhancing Multimodal Rumor Detection with Statistical Image Features and Modal Alignment via Contrastive Learning.

.- Audio-Driven Face Photo-Sketch Video Generation.

.- A Decoupling Video Frame Selection Method for Action Recognition.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.