E-Book, Englisch, Band 41, 220 Seiten, eBook
Reihe: Oberwolfach Seminars
Hacon / Kovács Classification of Higher Dimensional Algebraic Varieties
2010
ISBN: 978-3-0346-0290-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 41, 220 Seiten, eBook
Reihe: Oberwolfach Seminars
ISBN: 978-3-0346-0290-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
I Basics.- 1 Introduction.- 1.A. Classification.- 2 Preliminaries.- 2.A. Notation.- 2.B. Divisors.- 2.C. Reflexive sheaves.- 2.D. Cyclic covers.- 2.E. R-divisors in the relative setting.- 2.F. Vanishing theorems.- 2.G. Families and base change.- 2.H. Parameter spaces and deformations of families.- 3 Singularities.- 3.A. Canonical singularities.- 3.B. Cones.- 3.C. Log canonical singularities.- 3.D. Normal crossings.- 3.E. Pinch points.- 3.F. Semi-log canonical singularities.- 3.G. Pairs.- 3.H. Rational and du Bois singularities.- II Recent advances in the MMP.- 4 Introduction.- 5 The main result.- 5.A. The cone and base point free theorems.- 5.B. Flips and divisorial contractions.- 5.C. The minimal model program for surfaces.- 5.D. The main theorem and sketch of proof.- 5.E. The minimal model program with scaling.- 5.F. PL-flips.- 5.G. Corollaries.- 6 Multiplier ideal sheaves.- 6.A. Asymptotic multiplier ideal sheaves.- 6.B. Extending pluricanonical forms.- 7 Finite generation of the restricted algebra.- 7.A. Rationality of the restricted algebra.- 7.B. Proof of (5.69).- 8 Log terminal models.- 8.A. Special termination.- 8.B. Existence of log terminal models.- 9 Non-vanishing.- 9.A. Nakayama–Zariski decomposition.- 9.B. Non-vanishing.- 10 Finiteness of log terminal models.- III Compact moduli spaces.- 11 Moduli problems.- 11.A. Representing functors.- 11.B. Moduli functors.- 11.C. Coarse moduli spaces.- 12 Hilbert schemes.- 12.A. The Grassmannian functor.- 12.B. The Hilbert functor.- 13 The construction of the moduli space.- 13.A. Boundedness.- 13.B. Constructing the moduli space.- 13.C. Local closedness.- 13.D. Separatedness.- 14 Families and moduli functors.- 14.A. An important example.- 14.B. Q-Gorenstein families.- 14.C. Projective moduli schemes.- 14.D. Moduli of pairs and other generalizations.- 15 Singularities of stable varieties.- 15.A. Singularity criteria.- 15.B. Applications to moduli spaces and vanishing theorems.- 15.C. Deformations of DB singularities.- 16 Subvarieties of moduli spaces.- 16.A. Shafarevich’s conjecture.- 16.B. The Parshin-Arakelov reformulation.- 16.C. Shafarevich’s conjecture for number fields.- 16.D. From Shafarevich to Mordell: Parshin’s trick.- 16.E. Hyperbolicity and boundedness.- 16.F. Higher dimensional fibers.- 16.G. Higher dimensional bases.- 16.H. Uniform and effective bounds.- 16.I. Techniques.- 16.J. Allowing more general fibers.- 16.K. Iterated Kodaira–Spencer maps and strong non-isotriviality.- IV Solutions and hints to some of the exercises.




