Buch, Englisch, 636 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 984 g
Buch, Englisch, 636 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 984 g
Reihe: Springer Monographs in Mathematics
ISBN: 978-3-030-10122-0
Verlag: Springer International Publishing
This edited volume offers a detailed account of the theory of directed graphs from the perspective of important classes of digraphs, with each chapter written by experts on the topic.
Outlining fundamental discoveries and new results obtained over recent years, this book provides a comprehensive overview of the latest research in the field. It covers core new results on each of the classes discussed, including chapters on tournaments, planar digraphs, acyclic digraphs, Euler digraphs, graph products, directed width parameters, and algorithms. Detailed indices ease navigation while more than 120 open problems and conjectures ensure that readers are immersed in all aspects of the field.
Classes of Directed Graphs provides a valuable reference for graduate students and researchers in computer science, mathematics and operations research. As digraphs are an important modelling tool in other areas of research, this book will also be a useful resource to researchers working in bioinformatics, chemoinformatics, sociology, physics, medicine, etc.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. Basic Terminology, Notation and Results (J. Bang-Jensen, G. Gutin).- 2. Tournaments and Semicomplete Digraphs (J. Bang-Jensen, F. Havet).- 3. Acyclic Digraphs (G. Gutin).- 4. Euler Digraphs (M. Wahlström).- 5. Planar digraphs (M. Pilipczuk, M. Pilipczuk).- 6. Locally Semicomplete Digraphs and Generalizations (J. Bang-Jensen).- 7. Semicomplete Multipartite Digraphs (A. Yeo).- 8. Quasi-Transitive Digraphs and Their Extensions (H. Galeana-Sánchez, C. Hernández-Cruz).- 9. Digraphs of Bounded Width (S. Kreutzer, O. Kwon).- 10. Digraphs Products (R. Hammack).- 11. Miscellaneous Digraph Classes (Y. Guo, M. Surmacs).- 12. Lexicographic Orientation Algorithms (J. Huang).- Indices.