Gut | Stopped Random Walks | E-Book | www2.sack.de
E-Book

Gut Stopped Random Walks

Limit Theorems and Applications
2. Auflage 2009
ISBN: 978-0-387-87835-5
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

Limit Theorems and Applications

E-Book, Englisch, 267 Seiten

Reihe: Springer Series in Operations Research and Financial Engineering

ISBN: 978-0-387-87835-5
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Classical probability theory provides information about random walks after a fixed number of steps. For applications, however, it is more natural to consider random walks evaluated after a random number of steps. Examples are sequential analysis, queueing theory, storage and inventory theory, insurance risk theory, reliability theory, and the theory of counters. Stopped Random Walks: Limit Theorems and Applications shows how this theory can be used to prove limit theorems for renewal counting processes, first passage time processes, and certain two-dimensional random walks, and to how these results are useful in various applications. This second edition offers updated content and an outlook on further results, extensions and generalizations. A new chapter examines nonlinear renewal processes in order to present the analagous theory for perturbed random walks, modeled as a random walk plus “noise”.

Gut Stopped Random Walks jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface to the 1st edition;5
2;Preface to the 2nd edition;6
3;Contents;7
4;Notation and Symbols;10
5;Introduction;11
6;1 Limit Theorems for Stopped Random Walks;19
6.1;1.1 Introduction;19
6.2;1.2 a.s. Convergence and Convergence in Probability;22
6.3;1.3 Anscombe’s Theorem;26
6.4;1.4 Moment Convergence in the Strong Law and the Central Limit Theorem;28
6.5;1.5 Moment Inequalities;31
6.6;1.6 Uniform Integrability;40
6.7;1.7 Moment Convergence;49
6.8;1.8 The Stopping Summand;52
6.9;1.9 The Law of the Iterated Logarithm;54
6.10;1.10 Complete Convergence and Convergence Rates;55
6.11;1.11 Problems;57
7;2 Renewal Processes and Random Walks;58
7.1;2.1 Introduction;58
7.2;2.2 Renewal Processes; Introductory Examples;59
7.3;2.3 Renewal Processes; Definition and General Facts;60
7.4;2.4 Renewal Theorems;63
7.5;2.5 Limit Theorems;66
7.6;2.6 The Residual Lifetime;70
7.7;2.7 Further Results;73
7.8;2.8 Random Walks; Introduction and Classifications;75
7.9;2.9 Ladder Variables;78
7.10;2.10 The Maximum and the Minimum of a Random Walk;80
7.11;2.11 Representation Formulas for the Maximum;81
7.12;2.12 Limit Theorems for the Maximum;83
8;3 Renewal Theory for Random Walks with Positive Drift;87
8.1;3.1 Introduction;87
8.2;3.2 Ladder Variables;90
8.3;3.3 Finiteness of Moments;91
8.4;3.4 The Strong Law of Large Numbers;96
8.5;3.5 The Central Limit Theorem;99
8.6;3.6 Renewal Theorems;101
8.7;3.7 Uniform Integrability;104
8.8;3.8 Moment Convergence;106
8.9;3.9 Further Results on E.(t) and Var.(t);108
8.10;3.10 The Overshoot;111
8.11;3.11 The Law of the Iterated Logarithm;116
8.12;3.12 Complete Convergence and Convergence Rates;117
8.13;3.13 Applications to the Simple Random Walk;117
8.14;3.14 Extensions to the Non-I.I.D. Case;120
8.15;3.15 Problems;120
9;4 Generalizations and Extensions;122
9.1;4.1 Introduction;122
9.2;4.2 A Stopped Two-Dimensional Random Walk;123
9.3;4.3 Some Applications;133
9.4;4.4 The Maximum of a Random Walk with Positive Drift;143
9.5;4.5 First Passage Times Across General Boundaries;148
10;5 Functional Limit Theorems;164
10.1;5.1 Introduction;164
10.2;5.2 An Anscombe–Donsker Invariance Principle;164
10.3;5.3 First Passage Times for Random Walks with Positive Drift;169
10.4;5.4 A Stopped Two-Dimensional Random Walk;174
10.5;5.5 The Maximum of a Random Walk with Positive Drift;176
10.6;5.6 First Passage Times Across General Boundaries;177
10.7;5.7 The Law of the Iterated Logarithm;179
10.8;5.8 Further Results;181
11;6 Perturbed Random Walks;182
11.1;6.1 Introduction;182
11.2;6.2 Limit Theorems; the General Case;185
11.3;6.3 Limit Theorems; the Case Zn = n · g( ¯;190
11.4;6.4 Convergence Rates;197
11.5;6.5 Finiteness of Moments; the General Case;197
11.6;6.6 Finiteness of Moments; the Case Zn = n · g(Yn) ¯;201
11.7;6.7 Moment Convergence; the General Case;205
11.8;6.8 Moment Convergence; the Case Zn = n · g( ¯;207
11.9;6.9 Examples;209
11.10;6.10 Stopped Two-Dimensional Perturbed Random Walks;212
11.11;6.11 The Case Zn = n · g( ¯;216
11.12;6.12 An Application;218
11.13;6.13 Remarks on Further Results and Extensions;221
11.14;6.14 Problems;228
12;A Some Facts from Probability Theory;229
12.1;A.1 Convergence of Moments. Uniform Integrability;229
12.2;A.2 Moment Inequalities for Martingales;231
12.3;A.3 Convergence of Probability Measures;235
12.4;A.4 Strong Invariance Principles;240
12.5;A.5 Problems;241
13;B Some Facts about Regularly Varying Functions;243
13.1;B.1 Introduction and Definitions;243
13.2;B.2 Some Results;244
14;References;246
15;Index;261



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.