Guo / Tian / Yan | Rogue Waves | Buch | 978-3-11-046942-4 | sack.de

Buch, Englisch, 204 Seiten, Format (B × H): 175 mm x 246 mm, Gewicht: 547 g

Guo / Tian / Yan

Rogue Waves

Mathematical Theory and Applications in Physics

Buch, Englisch, 204 Seiten, Format (B × H): 175 mm x 246 mm, Gewicht: 547 g

ISBN: 978-3-11-046942-4
Verlag: De Gruyter


This book gives an overview of the theoretical research on rogue waves and discusses solutions to rogue wave formation via the Darboux and bilinear transformations, algebro-geometric reduction, and inverse scattering and similarity transformations. Studies on nonlinear optics are included, making the book a comprehensive reference for researchers in applied mathematics, optical physics, geophysics, and ocean engineering. Contents
The Research Process for Rogue Waves
Construction of Rogue Wave Solution by the Generalized Darboux Transformation
Construction of Rogue Wave Solution by Hirota Bilinear Method, Algebro-geometric Approach and Inverse Scattering Method
The Rogue Wave Solution and Parameters Managing in Nonautonomous Physical Model
Guo / Tian / Yan Rogue Waves jetzt bestellen!

Zielgruppe


Graduate students and researchers in applied mathematics, nonline

Weitere Infos & Material


Table of content:

Chapter 1 Introduction and updates on rogue wave research
1.1 Research history and progress on rogue wave phenomenal
1.2 Key experiments on rogue wave
1.3 Research methods and physical mechanism of rogue wave
1.4 Linear and non-linear mechanism of rogue wave
1.5 Rogue wave formation; mechanism and characteristic
1.6 Rogue wave simulation; experiments, statistical and numerical methods
1.7 Rogue wave solution to nonlinear partial differential equation
1.8 Rogue wave in optics
1.9 Rogue wave in finance
1.10 Rogue wave in non-autonomous system
Chapter 2 Solution to rogue wave formation; generalized Darboux transformation
2.1 classical Darboux transformation
2.2 Darboux transformation for KdV equation
2.3 Darboux transformation for NLS equation with N component
2.4 Rogue wave solution to NLS equation with two component;breathers, solitons
2.5 Darboux transformation for NLS equation
2.6 Darboux transformation for DNLS equation; high-order solitons
Chapter 3 Solutions to rogue wave formation; Bilinear transformation, algebro-geometric reduction
3.1 Hirota bilinear method; solitons for NLS equation and DS-I equation
3.2 Reduction for KP equation
3.3 Algebro- geometric reduction; Fredholm determinant, solution to rogue wave formation
Chapter 4 rogue wave solution to nonlinear physical model and parameter control
4.1 Introduction of rogue wave in physical studies
4.2 Time-modulated NLS equation; one dimensional nonlinear physical model, symmetry analysis, solutions
4.3 (3+1)-dimensional time-modulated GP/NLS equation; three dimensional nonlinear physical model, symmetry analysis
4.4 Generalized time-modulated high-order NLS equation
4.5 Two dimensional BEC equation
4.6 (2+1)-dimensional non-local NLS equation
4.7 Discrete Ablowitz-Ladik-Hirota lattices


B. Guo, IAPCM, China; L. Tian, Nanjing Normal U., China;, Z. Yan, ISS, CAS, China; L. Li, South China U. of Tech., China.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.