Gulbinska | Lithium-ion Battery Materials and Engineering | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 212 Seiten

Reihe: Green Energy and Technology

Gulbinska Lithium-ion Battery Materials and Engineering

Current Topics and Problems from the Manufacturing Perspective
1. Auflage 2014
ISBN: 978-1-4471-6548-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Current Topics and Problems from the Manufacturing Perspective

E-Book, Englisch, 212 Seiten

Reihe: Green Energy and Technology

ISBN: 978-1-4471-6548-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Gaining public attention due, in part,  to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production.This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries.Authors with years of experience in the applied science and engineering of lithium-ion batteries gather to share their view on where lithium-ion technology stands now, what are the main challenges, and their possible solutions. The book contains real-life examples of how a subtle change in cell components can have a considerable effect on cell's performance. Examples are supported with approachable basic science commentaries. Providing a unique combination of practical know-how with an in-depth perspective, this book will appeal to graduate students, young faculty members, or others interested in the current research and development trends in lithium-ion technology.

Malgorzata K. Gulbinska holds a Ph.D. degree in chemistry, with experience in inorganic syntheses methods (including solid state methods) and in materials science and a strong background in materials analyses methods (such as XRD, SEM, BET, etc.) and the assembly and testing of coin and pouch lithium-ion cells (both half and full cells).Since February 2005 she has been working at Yardney Technical Products, Inc., located in Pawcatuck, CT, USA. Yardney is a manufacturer of the high-end lithium-ion batteries for space, military and medical (implanted hearing aid) applications who also sponsored a significant part of her graduate (Ph.D.) thesis work that was described silicon-based anode materials for LIB applications.Within the past years, Malgorzata Gulbinska was a PI and Co-PI on several completed and current grants; totaling over $3,000,000.00. The sources were/are both Federal (Department of Energy, National Science Foundation, Naval Air Warfare Center) as well as Industrial (BASF Catalysts LLC, NJ, USA; HPL SA, Lausanne, Switzerland).Recently (2007-2009) she has been awarded five Phase I research grants; three from the U.S. Department of Energy, one from National Science Foundation, and one from NASA.

Gulbinska Lithium-ion Battery Materials and Engineering jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface I: Introduction;6
2;Preface II: Historical Notes;8
3;Contents;10
4;1 Lithium-ion Cell Materials in Practice;11
4.1;Abstract;11
4.2;1.1 Lithium-ion Cell Components and Materials;11
4.3;1.2 Cathode Active Materials;13
4.3.1;1.2.1 Lithium Cobalt Oxide;15
4.3.2;1.2.2 Lithium Nickel Oxide Derivatives: LiNi0.8Co0.2O2 and LiNi0.8Co0.15Al0.05O2;20
4.3.3;1.2.3 The Family of LiNi1-x-yCoxMnyO2 Materials;20
4.3.4;1.2.4 Lithium Manganese Spinel and Derivatives;23
4.3.5;1.2.5 Lithium Iron Phosphate;25
4.4;1.3 Anode Active Materials;27
4.5;1.4 Electrodes: Conductive Diluents and Binders;30
4.6;1.5 Electrolyte Solutions;32
4.7;1.6 Porous Separators;34
4.8;1.7 Future Trends in Lithium-ion Cell Materials;34
4.9;References;37
5;2 Predicting Materials’ Performance;40
5.1;Abstract;40
5.2;2.1 Editor’s Note;40
5.3;2.2 Introduction: Macro and Intrinsic Kinetics;41
5.4;2.3 Thermodynamics of Solid Electrodes;44
5.4.1;2.3.1 Ideal and Real Solutions;45
5.4.2;2.3.2 Equilibrium Potentials on EASP;48
5.4.3;2.3.3 The Dependence of Equilibrium Potential on DoC of EASP;48
5.4.4;2.3.4 Entropy of the Electrode Reaction;51
5.5;2.4 Mass Transport in Solid Electrodes;54
5.5.1;2.4.1 Galvanostatic Pulse Method;57
5.5.2;2.4.2 Potential Transient Method;59
5.6;2.5 Rate of Electrochemical Stage;61
5.7;2.6 Concentration Dependence of Exchange Current on EASP;61
5.8;2.7 The Methods of Investigation of Electrochemical Reaction Step;63
5.9;2.8 Selected Examples of OCP and Related Dependencies on Lithium Content;66
5.10;2.9 Conclusion;69
5.11;References;69
6;3 Optimizing Electrodes for Lithium-ion Cells;72
6.1;Abstract;72
6.2;3.1 Introduction;72
6.3;3.2 Electrode Formulations and the Concepts of Weight Loading and Porosity;74
6.4;3.3 Weight Loading and Porosity of Electrodes:Impact on DC Resistance of the Li-ion Cell;77
6.5;3.4 Component Optimization, Example 1: Cathode and Binder Improvements;80
6.6;3.5 Component Optimization, Example 2: Conductive Diluents in the Anode;84
6.7;3.6 Systemic Optimization Example: Thermal Stability and Low-Temperature Performance;87
6.8;3.7 Separators Assessment and Optimization;89
6.9;3.8 Electrolyte: Conductivity Optimization;90
6.10;3.9 Nanoparticulate Electrode Materials and Their Implementation and Optimization Challenges;93
6.11;3.10 Conclusions;95
6.12;3.11 Further Reading;95
6.13;References;96
7;4 Lithium-ion Cells for High-End Applications;98
7.1;Abstract;98
7.2;4.1 Lithium-ion Cells for High-End Applications: Introduction;98
7.2.1;4.1.1 Land;102
7.2.2;4.1.2 Human Implantable Lithium Batteries;107
7.2.3;4.1.3 Aerial;109
7.2.4;4.1.4 Space;111
7.2.5;4.1.5 Sea;115
7.3;4.2 Quality and Reliability for High-End Lithium-ion Technology;117
7.3.1;4.2.1 Quality;117
7.3.2;4.2.2 Reliability;118
7.4;4.3 Conclusion;120
7.5;References;120
8;5 Lithium-ion Cell and Battery Safety;123
8.1;Abstract;123
8.2;5.1 Battery Safety: An Introduction and Critical Definitions;123
8.2.1;5.1.1 Analyses Methods: From Materials, Through Components, to Cells;128
8.2.1.1;5.1.1.1 Cathodes;129
8.2.1.2;5.1.1.2 Anodes;132
8.2.1.3;5.1.1.3 Electrolytes;133
8.2.1.4;5.1.1.4 Separators;139
8.3;5.2 Cell-Level Protection Devices;141
8.4;5.3 Safety at the Battery Level;144
8.4.1;5.3.1 Thermal Management;145
8.4.2;5.3.2 Battery Management System (BMS);149
8.5;5.4 Safety Testing;152
8.5.1;5.4.1 Safety Testing Examples;152
8.5.1.1;5.4.1.1 Test Example 1: Gross Overcharge and Event Propagation;153
8.5.1.2;5.4.1.2 Test Example 2: Nail Penetration;154
8.6;5.5 Conclusions;155
8.7;5.6 Further Reading;155
8.8;References;156
9;6 Lithium-ion Cells in Hybrid Systems;159
9.1;Abstract;159
9.2;6.1 Hybrid Systems: General Introduction;159
9.3;6.2 Lithium-ionUltracapacitor Hybrid System;160
9.3.1;6.2.1 Li-ionUltracapacitor Hybrid Construction;162
9.3.2;6.2.2 Li-ionUltracapacitor Hybrid Testing;163
9.3.3;6.2.3 Li-ionUltracapacitor Hybrid Results;164
9.3.4;6.2.4 Li-ionUltracapacitor Hybrid Conclusions and Applications;164
9.4;6.3 Li-ionLithium-Air Hybrid System;166
9.4.1;6.3.1 Li-ionLithium-Air Hybrid Battery Construction;167
9.4.2;6.3.2 Li-ionLithium-Air Hybrid Testing;168
9.4.3;6.3.3 Li-ionLithium-Air Hybrid Testing Results;168
9.4.4;6.3.4 Li-ionLithium-Air Hybrid Conclusions and Applications;169
9.5;6.4 Design Considerations for a Fuel CellLi-ion Rechargeable Battery Hybrid Power System;169
9.5.1;6.4.1 A Case Study: The Fuel Cell Component Selection for the Hybrid System;170
9.5.1.1;6.4.1.1 Fuel Storage;171
9.5.1.2;6.4.1.2 Operational Limitations of the Candidate Fuel Cells;172
9.5.1.3;6.4.1.3 Estimated Specific Energy, Energy Density, and Power Density in the Particular Hybrid System;173
9.5.1.4;6.4.1.4 Comparative Technology Readiness;174
9.5.1.5;6.4.1.5 Other: Efficiency, Thermal Losses, and Fuel Purity Requirements;174
9.5.2;6.4.2 Power Management and Design Optimization of Fuel CellBattery Hybrid System;175
9.5.3;6.4.3 Designing the Best Lithium-ion Battery for a BatteryFuel Cell Hybrid System;176
9.5.4;6.4.4 Fuel CellLi-ion Hybrid System: Conclusions;178
9.6;6.5 Hybrid Systems: Closing Remarks;179
9.7;6.6 Further Reading;179
9.8;References;180
10;7 Competing Technologies Landscape;182
10.1;Abstract;182
10.2;7.1 Introduction;182
10.3;7.2 Man-Portable Applications Background;183
10.3.1;7.2.1 Other Battery Technologies for Portable Applications;184
10.3.2;7.2.2 Fuel Cells for Portable Applications;184
10.3.3;7.2.3 Photovoltaics for Portable (and Other) Applications;192
10.3.4;7.2.4 Thermal Electric Technology for Portable (and Other) Applications;193
10.3.5;7.2.5 Piezoelectric Technology for Portable Applications;194
10.3.6;7.2.6 Supercapacitors for Portable Applications;195
10.3.7;7.2.7 Internal Combustion Engines for Portable Applications;195
10.4;7.3 Transport Applications;196
10.5;7.4 Stationary Applications;199
10.6;7.5 Summary;201
10.7;7.6 Conclusions;202
10.8;7.7 Further Reading;203
10.9;References;212



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.