E-Book, Englisch, 212 Seiten
Reihe: Green Energy and Technology
Gulbinska Lithium-ion Battery Materials and Engineering
1. Auflage 2014
ISBN: 978-1-4471-6548-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Current Topics and Problems from the Manufacturing Perspective
E-Book, Englisch, 212 Seiten
Reihe: Green Energy and Technology
ISBN: 978-1-4471-6548-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Gaining public attention due, in part, to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production.This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries.Authors with years of experience in the applied science and engineering of lithium-ion batteries gather to share their view on where lithium-ion technology stands now, what are the main challenges, and their possible solutions. The book contains real-life examples of how a subtle change in cell components can have a considerable effect on cell's performance. Examples are supported with approachable basic science commentaries. Providing a unique combination of practical know-how with an in-depth perspective, this book will appeal to graduate students, young faculty members, or others interested in the current research and development trends in lithium-ion technology.
Malgorzata K. Gulbinska holds a Ph.D. degree in chemistry, with experience in inorganic syntheses methods (including solid state methods) and in materials science and a strong background in materials analyses methods (such as XRD, SEM, BET, etc.) and the assembly and testing of coin and pouch lithium-ion cells (both half and full cells).Since February 2005 she has been working at Yardney Technical Products, Inc., located in Pawcatuck, CT, USA. Yardney is a manufacturer of the high-end lithium-ion batteries for space, military and medical (implanted hearing aid) applications who also sponsored a significant part of her graduate (Ph.D.) thesis work that was described silicon-based anode materials for LIB applications.Within the past years, Malgorzata Gulbinska was a PI and Co-PI on several completed and current grants; totaling over $3,000,000.00. The sources were/are both Federal (Department of Energy, National Science Foundation, Naval Air Warfare Center) as well as Industrial (BASF Catalysts LLC, NJ, USA; HPL SA, Lausanne, Switzerland).Recently (2007-2009) she has been awarded five Phase I research grants; three from the U.S. Department of Energy, one from National Science Foundation, and one from NASA.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface I: Introduction;6
2;Preface II: Historical Notes;8
3;Contents;10
4;1 Lithium-ion Cell Materials in Practice;11
4.1;Abstract;11
4.2;1.1 Lithium-ion Cell Components and Materials;11
4.3;1.2 Cathode Active Materials;13
4.3.1;1.2.1 Lithium Cobalt Oxide;15
4.3.2;1.2.2 Lithium Nickel Oxide Derivatives: LiNi0.8Co0.2O2 and LiNi0.8Co0.15Al0.05O2;20
4.3.3;1.2.3 The Family of LiNi1-x-yCoxMnyO2 Materials;20
4.3.4;1.2.4 Lithium Manganese Spinel and Derivatives;23
4.3.5;1.2.5 Lithium Iron Phosphate;25
4.4;1.3 Anode Active Materials;27
4.5;1.4 Electrodes: Conductive Diluents and Binders;30
4.6;1.5 Electrolyte Solutions;32
4.7;1.6 Porous Separators;34
4.8;1.7 Future Trends in Lithium-ion Cell Materials;34
4.9;References;37
5;2 Predicting Materials’ Performance;40
5.1;Abstract;40
5.2;2.1 Editor’s Note;40
5.3;2.2 Introduction: Macro and Intrinsic Kinetics;41
5.4;2.3 Thermodynamics of Solid Electrodes;44
5.4.1;2.3.1 Ideal and Real Solutions;45
5.4.2;2.3.2 Equilibrium Potentials on EASP;48
5.4.3;2.3.3 The Dependence of Equilibrium Potential on DoC of EASP;48
5.4.4;2.3.4 Entropy of the Electrode Reaction;51
5.5;2.4 Mass Transport in Solid Electrodes;54
5.5.1;2.4.1 Galvanostatic Pulse Method;57
5.5.2;2.4.2 Potential Transient Method;59
5.6;2.5 Rate of Electrochemical Stage;61
5.7;2.6 Concentration Dependence of Exchange Current on EASP;61
5.8;2.7 The Methods of Investigation of Electrochemical Reaction Step;63
5.9;2.8 Selected Examples of OCP and Related Dependencies on Lithium Content;66
5.10;2.9 Conclusion;69
5.11;References;69
6;3 Optimizing Electrodes for Lithium-ion Cells;72
6.1;Abstract;72
6.2;3.1 Introduction;72
6.3;3.2 Electrode Formulations and the Concepts of Weight Loading and Porosity;74
6.4;3.3 Weight Loading and Porosity of Electrodes:Impact on DC Resistance of the Li-ion Cell;77
6.5;3.4 Component Optimization, Example 1: Cathode and Binder Improvements;80
6.6;3.5 Component Optimization, Example 2: Conductive Diluents in the Anode;84
6.7;3.6 Systemic Optimization Example: Thermal Stability and Low-Temperature Performance;87
6.8;3.7 Separators Assessment and Optimization;89
6.9;3.8 Electrolyte: Conductivity Optimization;90
6.10;3.9 Nanoparticulate Electrode Materials and Their Implementation and Optimization Challenges;93
6.11;3.10 Conclusions;95
6.12;3.11 Further Reading;95
6.13;References;96
7;4 Lithium-ion Cells for High-End Applications;98
7.1;Abstract;98
7.2;4.1 Lithium-ion Cells for High-End Applications: Introduction;98
7.2.1;4.1.1 Land;102
7.2.2;4.1.2 Human Implantable Lithium Batteries;107
7.2.3;4.1.3 Aerial;109
7.2.4;4.1.4 Space;111
7.2.5;4.1.5 Sea;115
7.3;4.2 Quality and Reliability for High-End Lithium-ion Technology;117
7.3.1;4.2.1 Quality;117
7.3.2;4.2.2 Reliability;118
7.4;4.3 Conclusion;120
7.5;References;120
8;5 Lithium-ion Cell and Battery Safety;123
8.1;Abstract;123
8.2;5.1 Battery Safety: An Introduction and Critical Definitions;123
8.2.1;5.1.1 Analyses Methods: From Materials, Through Components, to Cells;128
8.2.1.1;5.1.1.1 Cathodes;129
8.2.1.2;5.1.1.2 Anodes;132
8.2.1.3;5.1.1.3 Electrolytes;133
8.2.1.4;5.1.1.4 Separators;139
8.3;5.2 Cell-Level Protection Devices;141
8.4;5.3 Safety at the Battery Level;144
8.4.1;5.3.1 Thermal Management;145
8.4.2;5.3.2 Battery Management System (BMS);149
8.5;5.4 Safety Testing;152
8.5.1;5.4.1 Safety Testing Examples;152
8.5.1.1;5.4.1.1 Test Example 1: Gross Overcharge and Event Propagation;153
8.5.1.2;5.4.1.2 Test Example 2: Nail Penetration;154
8.6;5.5 Conclusions;155
8.7;5.6 Further Reading;155
8.8;References;156
9;6 Lithium-ion Cells in Hybrid Systems;159
9.1;Abstract;159
9.2;6.1 Hybrid Systems: General Introduction;159
9.3;6.2 Lithium-ionUltracapacitor Hybrid System;160
9.3.1;6.2.1 Li-ionUltracapacitor Hybrid Construction;162
9.3.2;6.2.2 Li-ionUltracapacitor Hybrid Testing;163
9.3.3;6.2.3 Li-ionUltracapacitor Hybrid Results;164
9.3.4;6.2.4 Li-ionUltracapacitor Hybrid Conclusions and Applications;164
9.4;6.3 Li-ionLithium-Air Hybrid System;166
9.4.1;6.3.1 Li-ionLithium-Air Hybrid Battery Construction;167
9.4.2;6.3.2 Li-ionLithium-Air Hybrid Testing;168
9.4.3;6.3.3 Li-ionLithium-Air Hybrid Testing Results;168
9.4.4;6.3.4 Li-ionLithium-Air Hybrid Conclusions and Applications;169
9.5;6.4 Design Considerations for a Fuel CellLi-ion Rechargeable Battery Hybrid Power System;169
9.5.1;6.4.1 A Case Study: The Fuel Cell Component Selection for the Hybrid System;170
9.5.1.1;6.4.1.1 Fuel Storage;171
9.5.1.2;6.4.1.2 Operational Limitations of the Candidate Fuel Cells;172
9.5.1.3;6.4.1.3 Estimated Specific Energy, Energy Density, and Power Density in the Particular Hybrid System;173
9.5.1.4;6.4.1.4 Comparative Technology Readiness;174
9.5.1.5;6.4.1.5 Other: Efficiency, Thermal Losses, and Fuel Purity Requirements;174
9.5.2;6.4.2 Power Management and Design Optimization of Fuel CellBattery Hybrid System;175
9.5.3;6.4.3 Designing the Best Lithium-ion Battery for a BatteryFuel Cell Hybrid System;176
9.5.4;6.4.4 Fuel CellLi-ion Hybrid System: Conclusions;178
9.6;6.5 Hybrid Systems: Closing Remarks;179
9.7;6.6 Further Reading;179
9.8;References;180
10;7 Competing Technologies Landscape;182
10.1;Abstract;182
10.2;7.1 Introduction;182
10.3;7.2 Man-Portable Applications Background;183
10.3.1;7.2.1 Other Battery Technologies for Portable Applications;184
10.3.2;7.2.2 Fuel Cells for Portable Applications;184
10.3.3;7.2.3 Photovoltaics for Portable (and Other) Applications;192
10.3.4;7.2.4 Thermal Electric Technology for Portable (and Other) Applications;193
10.3.5;7.2.5 Piezoelectric Technology for Portable Applications;194
10.3.6;7.2.6 Supercapacitors for Portable Applications;195
10.3.7;7.2.7 Internal Combustion Engines for Portable Applications;195
10.4;7.3 Transport Applications;196
10.5;7.4 Stationary Applications;199
10.6;7.5 Summary;201
10.7;7.6 Conclusions;202
10.8;7.7 Further Reading;203
10.9;References;212




