Buch, Englisch, 232 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1190 g
Buch, Englisch, 232 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1190 g
ISBN: 978-3-540-64797-3
Verlag: Springer Berlin Heidelberg
Equivariant cohomology on smooth manifolds is the subject of this book which is part of a collection of volumes edited by J. Brüning and V.W. Guillemin. The point of departure are two relatively short but very remarkable papers be Henry Cartan, published in 1950 in the Proceedings of the "Colloque de Topologie". These papers are reproduced here, together with a modern introduction to the subject, written by two of the leading experts in the field. This "introduction" comes as a textbook of its own, though, presenting the first full treatment of equivariant cohomology in the de Rahm setting. The well known topological approach is linked with the differential form aspect through the equivariant de Rahm theorem. The systematic use of supersymmetry simplifies considerably the ensuing development of the basic technical tools which are then applied to a variety of subjects, leading up to the localization theorems and other very recent results.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1 Equivariant Cohomology in Topology.- 3 The Weil Algebra.- 4 The Weil Model and the Cartan Model.- 5 Cartan’s Formula.- 6 Spectral Sequences.- 7 Fermionic Integration.- 8 Characteristic Classes.- 9 Equivariant Symplectic Forms.- 10 The Thom Class and Localization.- 11 The Abstract Localization Theorem.- Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie: Henri Cartan.- La transgression dans un groupe de Lie et dans un espace fibré principal: Henri Cartan.