Guillemin | Moment Maps and Combinatorial Invariants of Hamiltonian Tn-spaces | Buch | 978-0-8176-3770-5 | sack.de

Buch, Englisch, Band 122, 152 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 418 g

Reihe: Progress in Mathematics

Guillemin

Moment Maps and Combinatorial Invariants of Hamiltonian Tn-spaces


1994
ISBN: 978-0-8176-3770-5
Verlag: Birkhäuser Boston

Buch, Englisch, Band 122, 152 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 418 g

Reihe: Progress in Mathematics

ISBN: 978-0-8176-3770-5
Verlag: Birkhäuser Boston


The action of a compact Lie group, , on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the , a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. For instance, the first chapter is largely devoted to the Delzant theorem, which says that there is a one-one correspondence between certain types of moment polytopes and certain types of symplectic -spaces. (One of the most challenging unsolved problems in symplectic geometry is to determine to what extent Delzant’s theorem is true of every compact symplectic -Space.)

The moment polytope also encodes quantum information about the actions of . Using the methods of geometric quantization, one can frequently convert this action into a representations, , of on a Hilbert space, and in some sense the moment polytope is a diagrammatic picture of the irreducible representations of which occur as subrepresentations of . Precise versions of this item of folklore are discussed in Chapters 3 and 4. Also, midway through Chapter 2 a more complicated object is discussed: the Duistermaat-Heckman measure, and the author explains in Chapter 4 how one can read off from this measure the approximate multiplicities with which the irreducible representations of occur in . This gives an excuse to touch on some results which are in themselves of great current interest: the Duistermaat-Heckman theorem, the localization theorems in equivariant cohomology of Atiyah-Bott and Berline-Vergne and the recent extremely exciting generalizations of these results by Witten, Jeffrey-Kirwan, Lalkman, and others.

The last two chapters of this book are a self-contained and somewhat unorthodoxtreatment of the theory of toric varieties in which the usual hierarchal relation of complex to symplectic is reversed. This book is addressed to researchers

Guillemin Moment Maps and Combinatorial Invariants of Hamiltonian Tn-spaces jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Basic Definitions and Examples.- 2. The Duistermaat-Heckman Theorem.- 3. Multiplicities as Invariants of Reduced Spaces.- 4. Partition Functions.- Appendix 1. Toric Varieties.- Appendix 2. Kaehler Structures on Toric Varieties.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.