E-Book, Englisch, 260 Seiten, eBook
Großmann Thermo-energetic Design of Machine Tools
2015
ISBN: 978-3-319-12625-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Systemic Approach to Solve the Conflict Between Power Efficiency, Accuracy and Productivity Demonstrated at the Example of Machining Production
E-Book, Englisch, 260 Seiten, eBook
Reihe: Lecture Notes in Production Engineering
ISBN: 978-3-319-12625-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;Abbreviations;9
3;1 Introduction;11
3.1;Abstract;11
3.2;1.1 Problem;11
3.3;1.2 Objectives and Project Structure of the CRC/TR 96;13
3.4;1.3 Design-Integrated Compensation and Control-Integrated Correction;16
3.5;1.4 Metrological Analysis and Benchmarking;17
3.6;1.5 Test Beds and Demonstrators;17
3.7;References;21
4;2 Model-Based Representation of Thermo-energetic Effects in Cutting Tools and Part Clamping Devices;22
4.1;Abstract;22
4.2;2.1 Introduction;23
4.2.1;2.1.1 Motivation and Problem Definition;23
4.2.2;2.1.2 Aim;23
4.3;2.2 Approach;24
4.3.1;2.2.1 Test Bed Description;24
4.3.2;2.2.2 Subject of Experimental Investigations;24
4.3.3;2.2.3 Simulation Assisted Investigations;26
4.4;2.3 Results;27
4.4.1;2.3.1 Temperature Fields and Thermo-elastic Elongation in the Chuck;27
4.4.2;2.3.2 Simulation Results and Adjustment with Experimental Investigations;28
4.4.3;2.3.3 Determination of Process Heat Parameters;30
4.5;2.4 Classification of Outcomes in the SFB/TR 96;32
4.6;2.5 Outlook;33
4.7;References;33
5;3 Model and Method for the Determination and Distribution of Converted Energies in Milling Processes;35
5.1;Abstract;35
5.2;3.1 Introduction;35
5.3;3.2 Approach;36
5.4;3.3 Results;37
5.4.1;3.3.1 Derivation of Analytical Temperature Models in Metal Cutting;37
5.4.2;3.3.2 Measurement of Temperature Fields in Metal Cutting;38
5.4.3;3.3.3 Equation for the Heat Flux;40
5.5;3.4 Classification of Outcomes CRC/TR 96;41
5.6;3.5 Outlook;42
5.7;References;42
6;4 Energy Model for Grinding Processes;43
6.1;Abstract;43
6.2;4.1 Introduction;44
6.3;4.2 Approach;44
6.3.1;4.2.1 Methodology to Model the Heat Sources in the Grinding Process;44
6.3.2;4.2.2 Energy Model for Single Grain Engagement;45
6.4;4.3 Results;47
6.4.1;4.3.1 Investigations to Characterize Chip Formation;47
6.4.2;4.3.2 Analysis of Energy Conversion During Chip Formation;49
6.4.3;4.3.3 Transferring the Energy Model onto the Multi Grain Engagement;53
6.5;4.4 Classification of Outcomes in the CRC/TR 96;54
6.6;4.5 Outlook;54
6.7;References;55
7;5 Thermo-energetic Modelling of Fluid Power Systems;56
7.1;Abstract;56
7.2;5.1 Introduction;56
7.3;5.2 Approach;57
7.4;5.3 Results;58
7.4.1;5.3.1 Complete Machine Analysis of a Milling Centre;58
7.4.2;5.3.2 Experimental Component Analysis of the Motor Spindle Cooling Sleeve;63
7.4.3;5.3.3 Simulation Model for the Calculation of the Motor Spindle Cooling Sleeve;64
7.5;5.4 Classification of Outcomes CRC/TR 96;65
7.6;References;66
8;6 Simulation of Pose- and Process-Dependent Machine Tool Models;67
8.1;Abstract;67
8.2;6.1 Introduction;67
8.3;6.2 Approach to Mapping of Structural Variability;68
8.3.1;6.2.1 General Strategy to Represent Discrete Motions;69
8.3.2;6.2.2 Motion in FE Models---Selected Aspects;70
8.4;6.3 Results;72
8.4.1;6.3.1 Example of Profile Rail Guidance;72
8.5;6.4 Classification in the CRC/TR 96;73
8.6;6.5 Outlook;73
8.7;References;74
9;7 Thermo-Elastic Simulation of Entire Machine Tool;75
9.1;Abstract;75
9.2;7.1 Introduction;75
9.3;7.2 Approach;76
9.4;7.3 Results;77
9.4.1;7.3.1 Model Order Reduction;77
9.4.2;7.3.2 Structure and Parameter Preserving Krylov Model Order Reduction;78
9.4.3;7.3.3 Handling of Structural Variability;80
9.4.3.1;7.3.3.1 Thermal Model;80
9.4.3.2;7.3.3.2 Mechanical Model;81
9.4.3.3;7.3.3.3 Thermo-Elastic Model;82
9.4.4;7.3.4 Practice Implementation of the Approach Shown for a Ball Screw Axis;83
9.4.5;7.3.5 Calculation Results and Performance;87
9.4.5.1;7.3.5.1 ANSYS Versus Matlab/Simulink Calculation;87
9.4.5.2;7.3.5.2 Simulation Versus Experiment: Column-Spindle Head;87
9.4.5.3;7.3.5.3 Simulation Versus Experiment: Ball Screw Based Strut Axis;88
9.5;7.4 Classification Among the Objectives of the CRC/TR 96;89
9.6;7.5 Outlook;90
9.7;References;90
10;8 Model Order Reduction for Thermo-Elastic Assembly Group Models;91
10.1;Abstract;91
10.2;8.1 Introduction;91
10.3;8.2 MOR for Switched and Coupled Systems;94
10.4;8.3 PMOR by the Iterative Rational Krylov Algorithm;96
10.5;8.4 Integration into the CRC/Transregio;98
10.6;References;99
11;9 High-Accuracy Thermo-Elastic Simulation on Massively Parallel Computer;100
11.1;Abstract;100
11.2;9.1 Introduction;100
11.3;9.2 Approaches;103
11.3.1;9.2.1 Mathematical Model for Heat Exchange;103
11.3.2;9.2.2 Spatial Discretization for Contact Problem in a Simplified Geometry;103
11.3.2.1;9.2.2.1 The Diffuse-Domain Method;103
11.3.2.2;9.2.2.2 Explicit Contact Formulation;105
11.3.3;9.2.3 Efficient Long-Term Integration of the Column Geometry;106
11.3.3.1;9.2.3.1 Defect Corrected Averaging;106
11.3.3.2;9.2.3.2 Preconditioning in Defect Corrected Averaging;109
11.4;9.3 Results;110
11.4.1;9.3.1 Comparison of the Diffuse-Domain Method with Explicit Formulation of the Contact;110
11.4.2;9.3.2 Results of Defect Corrected Averaging;112
11.5;9.4 Classification in the CRC/TR 96;114
11.6;9.5 Outlook;114
11.7;References;115
12;10 Modelling of Thermal Interactions Between Environment and Machine Tool;116
12.1;Abstract;116
12.2;10.1 Introduction;116
12.3;10.2 Approach;117
12.4;10.3 Results;118
12.4.1;10.3.1 Modelling of Thermal Influences and Interactions;118
12.4.1.1;10.3.1.1 Representation of the Boundary Conditions for Convection;118
12.4.1.1.1;Numerical Versus Analytical Calculation;118
12.4.1.2;10.3.1.2 Representation of the Radiation Boundary Conditions;121
12.4.2;10.3.2 Sensitivity Analysis on a Machine Tool Structure;124
12.4.3;10.3.3 Verification in Experiment;128
12.5;10.4 Classification According to the Goals of the CRC/TR 96 and Outlook;128
12.6;References;129
13;11 Determination and Modelling of Heat Transfer Mechanisms Acting Among Machine Tool Components;130
13.1;Abstract;130
13.2;11.1 Introduction;130
13.3;11.2 Approach;133
13.3.1;11.2.1 Determination of Contact Heat Transfer in Experiments;133
13.3.2;11.2.2 Modelling the Contact Heat Transfer;135
13.4;11.3 Results;136
13.5;11.4 Classification of Outcomes in the CRC/TR 96;137
13.6;11.5 Outlook;138
13.7;References;138
14;12 Investigation of Components and Assembly Groups;139
14.1;Abstract;139
14.2;12.1 Introduction;140
14.3;12.2 Approach;141
14.3.1;12.2.1 Guidance Systems;141
14.3.2;12.2.2 Ball Screws;142
14.3.3;12.2.3 Demonstrator Machine Tool;143
14.4;12.3 Results;144
14.4.1;12.3.1 Rail Guidance Systems;144
14.4.2;12.3.2 Ball Screws;145
14.4.3;12.3.3 The Machine Tool as a Whole;146
14.5;12.4 Classification of Outcomes CRC/TR 96;147
14.6;12.5 Outlook;148
14.7;References;148
15;13 Adjustment of Uncertain Parameters in Thermal Models of Machine Tools;149
15.1;Abstract;149
15.2;13.1 Introduction;149
15.2.1;13.1.1 Uncertain Parameters in Thermal Models;150
15.2.2;13.1.2 Adjustment of Uncertain Parameters;152
15.3;13.2 Approach;153
15.3.1;13.2.1 Engineering of Efficient Parameter Adjustment Methods;153
15.3.2;13.2.2 Information Processing Methods for Parameter Adjustment;155
15.4;13.3 Results;156
15.4.1;13.3.1 Visualisation for the Parameter Influence Analysis;156
15.4.2;13.3.2 Load Cases for Data Acquisition;158
15.5;13.4 Summary and Outlook;160
15.6;References;160
16;14 Correction Algorithms and High-Dimensional Characteristic Diagrams;162
16.1;Abstract;162
16.2;14.1 Determination of Relevant Parameters Using Adjoint-Based Sensitivity Analysis;162
16.2.1;14.1.1 Background of Adjoint-Based Sensitivity Analysis;163
16.2.2;14.1.2 Numerical Results;166
16.3;14.2 Optimal Placement of Temperature Sensors for the Estimation of the TCP Displacement;167
16.3.1;14.2.1 TCP Displacement Estimation;167
16.3.2;14.2.2 Optimization of the Estimator's Quality;169
16.3.3;14.2.3 Numerical Results;171
16.4;14.3 Characteristic Diagrams;172
16.5;14.4 Integration into the CRC/TR 96 and Outlook;176
16.6;References;177
17;15 Correction Model of Load-Dependent Structural Deformations Based on Transfer Functions;178
17.1;Abstract;178
17.2;15.1 Introduction;178
17.3;15.2 Approach;179
17.3.1;15.2.1 Correction Method;179
17.3.2;15.2.2 Experimental Methodology;181
17.4;15.3 Results;181
17.4.1;15.3.1 Stressing Unit for a Targeted Load of the Machine Axes;182
17.4.2;15.3.2 Displacement Model for One Point in the Workspace;182
17.4.3;15.3.3 Development of a Volumetric Method to Measure Thermo-Elastic Displacements;184
17.5;15.4 Classification of Outcomes CRC/TR 96;185
17.6;15.5 Outlook;185
17.7;References;186
18;16 Structural Model-Based Correction of Thermo-elastic Machine Tool Errors;187
18.1;Abstract;187
18.2;16.1 Introduction;187
18.3;16.2 Approach;188
18.4;16.3 Results;190
18.4.1;16.3.1 Real Time Thermal Model;190
18.4.2;16.3.2 Requirements in Terms of the Load Data's Sampling Intervals;191
18.4.3;16.3.3 Local Assignment;192
18.4.4;16.3.4 Position-Dependent Calculation of the Correction Value;194
18.4.5;16.3.5 Implementation of Load Data Capture in the TwinCAT3 Control;195
18.4.6;16.3.6 Test of Control-Integrated Load Data Capture and Temperature Field Calculation;196
18.5;16.4 Classification of Outcomes in the CRC/TR 96;197
18.5.1;16.4.1 Applicability Options for Structural Model-Based Correction;197
18.6;16.5 Outlook;198
18.7;References;198
19;17 Modelling and Design of Systems for Active Control of Temperature Distribution in Frame Subassemblies;200
19.1;Abstract;200
19.2;17.1 Introduction;200
19.3;17.2 Approach;201
19.4;17.3 Results;202
19.4.1;17.3.1 Material Composite of Phase-Change Material and Metal Foam;202
19.4.2;17.3.2 Switchable Thermal Conduction Based on Shape Memory Alloys;204
19.4.3;17.3.3 Switchable Thermal Conduction Based on Magnetorheological Fluids;206
19.5;17.4 Classification in the CRC/TR 96;208
19.6;17.5 Outlook;208
19.7;References;208
20;18 Structurally Integrated Sensors;210
20.1;Abstract;210
20.2;18.1 Introduction;210
20.3;18.2 Configuration of Sensor Applications;211
20.3.1;18.2.1 Measurement Principle;211
20.3.2;18.2.2 Sensor Arrangement in Complex Machine Structures;212
20.4;18.3 Test Bed Results;213
20.4.1;18.3.1 Determining the Suitability of the Sensor Applications;213
20.4.1.1;18.3.1.1 Verification of the Measurement Principle;214
20.4.1.1.1;Tests Designed to Determine the Suitability of the Sensor Application;214
20.4.1.2;18.3.1.2 Long-Term Stability Tests;216
20.4.2;18.3.2 Validation Measurements;218
20.5;18.4 Classification in the CRC;221
20.6;18.5 Outlook;221
20.7;References;221
21;19 Thermo-Energetic Motor Optimisation;223
21.1;Abstract;223
21.2;19.1 Introduction;223
21.3;19.2 Approach;224
21.4;19.3 Results;224
21.4.1;19.3.1 Power Dissipation Models;224
21.4.2;19.3.2 Thermal Models;229
21.5;19.4 Classification in the CRC/TR 96;230
21.6;19.5 Outlook;230
21.7;References;231
22;20 Technical and Economic Benchmarking Guideline for the Compensation and Correction of Thermally Induced Machine Tool Errors;232
22.1;Abstract;232
22.2;20.1 Introduction;232
22.3;20.2 The Benchmarking Model;234
22.3.1;20.2.1 Partial Model ``Machine Tool Configuration'';235
22.3.2;20.2.2 Application Conditions;236
22.3.3;20.2.3 Benchmarking Criteria;238
22.3.3.1;20.2.3.1 Benchmarking Criteria for Benefit Description;238
22.3.3.1.1;Machining Accuracy;238
22.3.3.1.2;Process Quality (Variance);239
22.3.3.1.3;Productivity;240
22.3.3.1.4;Energy Consumption;240
22.3.3.2;20.2.3.2 Benchmarking Criteria Representing Costs;240
22.3.3.2.1;Machine Life Cycle Costs;241
22.3.3.2.2;Engineering Workflows;242
22.4;20.3 Model Application;243
22.5;20.4 Classification in the CRC/TR 96 and Outlook;243
22.6;References;244
23;21 Experimental Analysis of the Thermo-Elastic Behaviour of Machine Tools by Means of Selective Thermography and Close-Range Photogrammetry;246
23.1;Abstract;246
23.2;21.1 Introduction;246
23.3;21.2 Approach;248
23.3.1;21.2.1 Measuring Method of Selective Thermography;248
23.4;21.3 Results;250
23.4.1;21.3.1 Preliminary Investigations and Photogrammetric Deformation and Position Measurements at the Test Bed;250
23.4.2;21.3.2 Development of Software to Execute and Analyse Photogrammetric and Selective Thermographic Measurements;252
23.4.3;21.3.3 Characterisation of Targets and Design of a Procedure to Calibrate a Camera Fixture;252
23.4.4;21.3.4 Selective Thermographic Temperature Measurement of a Machine Column;253
23.4.5;21.3.5 Photogrammetric Measurement of Thermally Affected Displacements on a Hexapod;256
23.5;21.4 Classification of Outcomes in the CRC/TR 96;258
23.6;21.5 Outlook;259
23.7;References;259