Großmann | Thermo-energetic Design of Machine Tools | E-Book | sack.de
E-Book

E-Book, Englisch, 260 Seiten, eBook

Reihe: Lecture Notes in Production Engineering

Großmann Thermo-energetic Design of Machine Tools

A Systemic Approach to Solve the Conflict Between Power Efficiency, Accuracy and Productivity Demonstrated at the Example of Machining Production
2015
ISBN: 978-3-319-12625-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Systemic Approach to Solve the Conflict Between Power Efficiency, Accuracy and Productivity Demonstrated at the Example of Machining Production

E-Book, Englisch, 260 Seiten, eBook

Reihe: Lecture Notes in Production Engineering

ISBN: 978-3-319-12625-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The approach to the solution within the CRC/TR 96 financed by the German Research Foundation DFG aims at measures that will allow manufacturing accuracy to be maintained under thermally unstable conditions with increased productivity, without an additional demand for energy for tempering. The challenge of research in the CRC/TR 96 derives from the attempt to satisfy the conflicting goals of reducing energy consumption and increasing accuracy and productivity in machining.In the current research performed in 19 subprojects within the scope of the CRC/TR 96, correction and compensation solutions that influence the thermo-elastic machine tool behaviour efficiently and are oriented along the thermo-elastic functional chain are explored and implemented. As part of this general objective, the following issues must be researched and engineered in an interdisciplinary setting and brought together into useful overall solutions: 1.  Providing the modelling fundamentals to calculate the heat fluxes and the resulting thermo-elastic deformations in a comprehensive manner, 2.  Mapping of the structural variability as a result of the relative movement inside the machine tool,3.  Providing the tools for an efficient adjustment of parameters that vary greatly in time and space by means of parameter identification methods as a prerequisite for correction and compensation solutions,4.  Engineering and demonstrating solutions to control-integrated correction of thermo-elastic errors by an inverse position setpoint compensation of the error at theTCP,5.  Engineering and demonstrating solutions based on the material properties to compensate for thermo-elastic effects through a homogeneous propagation of the temperature field, as well as reducing and smoothing the distribution of heat dissipated in supporting structures,6.  Developing metrological fundamentals to record the thermo-elastic errors in special structural areas of machine tools,7.  Engineering a methodological approach to simultaneous and complex evaluation of the CRC/TR 96 solutions, referring to their impact on product quality, production rate, energy consumption and machine tool costs
Großmann Thermo-energetic Design of Machine Tools jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1;Contents;6
2;Abbreviations;9
3;1 Introduction;11
3.1;Abstract;11
3.2;1.1 Problem;11
3.3;1.2 Objectives and Project Structure of the CRC/TR 96;13
3.4;1.3 Design-Integrated Compensation and Control-Integrated Correction;16
3.5;1.4 Metrological Analysis and Benchmarking;17
3.6;1.5 Test Beds and Demonstrators;17
3.7;References;21
4;2 Model-Based Representation of Thermo-energetic Effects in Cutting Tools and Part Clamping Devices;22
4.1;Abstract;22
4.2;2.1 Introduction;23
4.2.1;2.1.1 Motivation and Problem Definition;23
4.2.2;2.1.2 Aim;23
4.3;2.2 Approach;24
4.3.1;2.2.1 Test Bed Description;24
4.3.2;2.2.2 Subject of Experimental Investigations;24
4.3.3;2.2.3 Simulation Assisted Investigations;26
4.4;2.3 Results;27
4.4.1;2.3.1 Temperature Fields and Thermo-elastic Elongation in the Chuck;27
4.4.2;2.3.2 Simulation Results and Adjustment with Experimental Investigations;28
4.4.3;2.3.3 Determination of Process Heat Parameters;30
4.5;2.4 Classification of Outcomes in the SFB/TR 96;32
4.6;2.5 Outlook;33
4.7;References;33
5;3 Model and Method for the Determination and Distribution of Converted Energies in Milling Processes;35
5.1;Abstract;35
5.2;3.1 Introduction;35
5.3;3.2 Approach;36
5.4;3.3 Results;37
5.4.1;3.3.1 Derivation of Analytical Temperature Models in Metal Cutting;37
5.4.2;3.3.2 Measurement of Temperature Fields in Metal Cutting;38
5.4.3;3.3.3 Equation for the Heat Flux;40
5.5;3.4 Classification of Outcomes CRC/TR 96;41
5.6;3.5 Outlook;42
5.7;References;42
6;4 Energy Model for Grinding Processes;43
6.1;Abstract;43
6.2;4.1 Introduction;44
6.3;4.2 Approach;44
6.3.1;4.2.1 Methodology to Model the Heat Sources in the Grinding Process;44
6.3.2;4.2.2 Energy Model for Single Grain Engagement;45
6.4;4.3 Results;47
6.4.1;4.3.1 Investigations to Characterize Chip Formation;47
6.4.2;4.3.2 Analysis of Energy Conversion During Chip Formation;49
6.4.3;4.3.3 Transferring the Energy Model onto the Multi Grain Engagement;53
6.5;4.4 Classification of Outcomes in the CRC/TR 96;54
6.6;4.5 Outlook;54
6.7;References;55
7;5 Thermo-energetic Modelling of Fluid Power Systems;56
7.1;Abstract;56
7.2;5.1 Introduction;56
7.3;5.2 Approach;57
7.4;5.3 Results;58
7.4.1;5.3.1 Complete Machine Analysis of a Milling Centre;58
7.4.2;5.3.2 Experimental Component Analysis of the Motor Spindle Cooling Sleeve;63
7.4.3;5.3.3 Simulation Model for the Calculation of the Motor Spindle Cooling Sleeve;64
7.5;5.4 Classification of Outcomes CRC/TR 96;65
7.6;References;66
8;6 Simulation of Pose- and Process-Dependent Machine Tool Models;67
8.1;Abstract;67
8.2;6.1 Introduction;67
8.3;6.2 Approach to Mapping of Structural Variability;68
8.3.1;6.2.1 General Strategy to Represent Discrete Motions;69
8.3.2;6.2.2 Motion in FE Models---Selected Aspects;70
8.4;6.3 Results;72
8.4.1;6.3.1 Example of Profile Rail Guidance;72
8.5;6.4 Classification in the CRC/TR 96;73
8.6;6.5 Outlook;73
8.7;References;74
9;7 Thermo-Elastic Simulation of Entire Machine Tool;75
9.1;Abstract;75
9.2;7.1 Introduction;75
9.3;7.2 Approach;76
9.4;7.3 Results;77
9.4.1;7.3.1 Model Order Reduction;77
9.4.2;7.3.2 Structure and Parameter Preserving Krylov Model Order Reduction;78
9.4.3;7.3.3 Handling of Structural Variability;80
9.4.3.1;7.3.3.1 Thermal Model;80
9.4.3.2;7.3.3.2 Mechanical Model;81
9.4.3.3;7.3.3.3 Thermo-Elastic Model;82
9.4.4;7.3.4 Practice Implementation of the Approach Shown for a Ball Screw Axis;83
9.4.5;7.3.5 Calculation Results and Performance;87
9.4.5.1;7.3.5.1 ANSYS Versus Matlab/Simulink Calculation;87
9.4.5.2;7.3.5.2 Simulation Versus Experiment: Column-Spindle Head;87
9.4.5.3;7.3.5.3 Simulation Versus Experiment: Ball Screw Based Strut Axis;88
9.5;7.4 Classification Among the Objectives of the CRC/TR 96;89
9.6;7.5 Outlook;90
9.7;References;90
10;8 Model Order Reduction for Thermo-Elastic Assembly Group Models;91
10.1;Abstract;91
10.2;8.1 Introduction;91
10.3;8.2 MOR for Switched and Coupled Systems;94
10.4;8.3 PMOR by the Iterative Rational Krylov Algorithm;96
10.5;8.4 Integration into the CRC/Transregio;98
10.6;References;99
11;9 High-Accuracy Thermo-Elastic Simulation on Massively Parallel Computer;100
11.1;Abstract;100
11.2;9.1 Introduction;100
11.3;9.2 Approaches;103
11.3.1;9.2.1 Mathematical Model for Heat Exchange;103
11.3.2;9.2.2 Spatial Discretization for Contact Problem in a Simplified Geometry;103
11.3.2.1;9.2.2.1 The Diffuse-Domain Method;103
11.3.2.2;9.2.2.2 Explicit Contact Formulation;105
11.3.3;9.2.3 Efficient Long-Term Integration of the Column Geometry;106
11.3.3.1;9.2.3.1 Defect Corrected Averaging;106
11.3.3.2;9.2.3.2 Preconditioning in Defect Corrected Averaging;109
11.4;9.3 Results;110
11.4.1;9.3.1 Comparison of the Diffuse-Domain Method with Explicit Formulation of the Contact;110
11.4.2;9.3.2 Results of Defect Corrected Averaging;112
11.5;9.4 Classification in the CRC/TR 96;114
11.6;9.5 Outlook;114
11.7;References;115
12;10 Modelling of Thermal Interactions Between Environment and Machine Tool;116
12.1;Abstract;116
12.2;10.1 Introduction;116
12.3;10.2 Approach;117
12.4;10.3 Results;118
12.4.1;10.3.1 Modelling of Thermal Influences and Interactions;118
12.4.1.1;10.3.1.1 Representation of the Boundary Conditions for Convection;118
12.4.1.1.1;Numerical Versus Analytical Calculation;118
12.4.1.2;10.3.1.2 Representation of the Radiation Boundary Conditions;121
12.4.2;10.3.2 Sensitivity Analysis on a Machine Tool Structure;124
12.4.3;10.3.3 Verification in Experiment;128
12.5;10.4 Classification According to the Goals of the CRC/TR 96 and Outlook;128
12.6;References;129
13;11 Determination and Modelling of Heat Transfer Mechanisms Acting Among Machine Tool Components;130
13.1;Abstract;130
13.2;11.1 Introduction;130
13.3;11.2 Approach;133
13.3.1;11.2.1 Determination of Contact Heat Transfer in Experiments;133
13.3.2;11.2.2 Modelling the Contact Heat Transfer;135
13.4;11.3 Results;136
13.5;11.4 Classification of Outcomes in the CRC/TR 96;137
13.6;11.5 Outlook;138
13.7;References;138
14;12 Investigation of Components and Assembly Groups;139
14.1;Abstract;139
14.2;12.1 Introduction;140
14.3;12.2 Approach;141
14.3.1;12.2.1 Guidance Systems;141
14.3.2;12.2.2 Ball Screws;142
14.3.3;12.2.3 Demonstrator Machine Tool;143
14.4;12.3 Results;144
14.4.1;12.3.1 Rail Guidance Systems;144
14.4.2;12.3.2 Ball Screws;145
14.4.3;12.3.3 The Machine Tool as a Whole;146
14.5;12.4 Classification of Outcomes CRC/TR 96;147
14.6;12.5 Outlook;148
14.7;References;148
15;13 Adjustment of Uncertain Parameters in Thermal Models of Machine Tools;149
15.1;Abstract;149
15.2;13.1 Introduction;149
15.2.1;13.1.1 Uncertain Parameters in Thermal Models;150
15.2.2;13.1.2 Adjustment of Uncertain Parameters;152
15.3;13.2 Approach;153
15.3.1;13.2.1 Engineering of Efficient Parameter Adjustment Methods;153
15.3.2;13.2.2 Information Processing Methods for Parameter Adjustment;155
15.4;13.3 Results;156
15.4.1;13.3.1 Visualisation for the Parameter Influence Analysis;156
15.4.2;13.3.2 Load Cases for Data Acquisition;158
15.5;13.4 Summary and Outlook;160
15.6;References;160
16;14 Correction Algorithms and High-Dimensional Characteristic Diagrams;162
16.1;Abstract;162
16.2;14.1 Determination of Relevant Parameters Using Adjoint-Based Sensitivity Analysis;162
16.2.1;14.1.1 Background of Adjoint-Based Sensitivity Analysis;163
16.2.2;14.1.2 Numerical Results;166
16.3;14.2 Optimal Placement of Temperature Sensors for the Estimation of the TCP Displacement;167
16.3.1;14.2.1 TCP Displacement Estimation;167
16.3.2;14.2.2 Optimization of the Estimator's Quality;169
16.3.3;14.2.3 Numerical Results;171
16.4;14.3 Characteristic Diagrams;172
16.5;14.4 Integration into the CRC/TR 96 and Outlook;176
16.6;References;177
17;15 Correction Model of Load-Dependent Structural Deformations Based on Transfer Functions;178
17.1;Abstract;178
17.2;15.1 Introduction;178
17.3;15.2 Approach;179
17.3.1;15.2.1 Correction Method;179
17.3.2;15.2.2 Experimental Methodology;181
17.4;15.3 Results;181
17.4.1;15.3.1 Stressing Unit for a Targeted Load of the Machine Axes;182
17.4.2;15.3.2 Displacement Model for One Point in the Workspace;182
17.4.3;15.3.3 Development of a Volumetric Method to Measure Thermo-Elastic Displacements;184
17.5;15.4 Classification of Outcomes CRC/TR 96;185
17.6;15.5 Outlook;185
17.7;References;186
18;16 Structural Model-Based Correction of Thermo-elastic Machine Tool Errors;187
18.1;Abstract;187
18.2;16.1 Introduction;187
18.3;16.2 Approach;188
18.4;16.3 Results;190
18.4.1;16.3.1 Real Time Thermal Model;190
18.4.2;16.3.2 Requirements in Terms of the Load Data's Sampling Intervals;191
18.4.3;16.3.3 Local Assignment;192
18.4.4;16.3.4 Position-Dependent Calculation of the Correction Value;194
18.4.5;16.3.5 Implementation of Load Data Capture in the TwinCAT3 Control;195
18.4.6;16.3.6 Test of Control-Integrated Load Data Capture and Temperature Field Calculation;196
18.5;16.4 Classification of Outcomes in the CRC/TR 96;197
18.5.1;16.4.1 Applicability Options for Structural Model-Based Correction;197
18.6;16.5 Outlook;198
18.7;References;198
19;17 Modelling and Design of Systems for Active Control of Temperature Distribution in Frame Subassemblies;200
19.1;Abstract;200
19.2;17.1 Introduction;200
19.3;17.2 Approach;201
19.4;17.3 Results;202
19.4.1;17.3.1 Material Composite of Phase-Change Material and Metal Foam;202
19.4.2;17.3.2 Switchable Thermal Conduction Based on Shape Memory Alloys;204
19.4.3;17.3.3 Switchable Thermal Conduction Based on Magnetorheological Fluids;206
19.5;17.4 Classification in the CRC/TR 96;208
19.6;17.5 Outlook;208
19.7;References;208
20;18 Structurally Integrated Sensors;210
20.1;Abstract;210
20.2;18.1 Introduction;210
20.3;18.2 Configuration of Sensor Applications;211
20.3.1;18.2.1 Measurement Principle;211
20.3.2;18.2.2 Sensor Arrangement in Complex Machine Structures;212
20.4;18.3 Test Bed Results;213
20.4.1;18.3.1 Determining the Suitability of the Sensor Applications;213
20.4.1.1;18.3.1.1 Verification of the Measurement Principle;214
20.4.1.1.1;Tests Designed to Determine the Suitability of the Sensor Application;214
20.4.1.2;18.3.1.2 Long-Term Stability Tests;216
20.4.2;18.3.2 Validation Measurements;218
20.5;18.4 Classification in the CRC;221
20.6;18.5 Outlook;221
20.7;References;221
21;19 Thermo-Energetic Motor Optimisation;223
21.1;Abstract;223
21.2;19.1 Introduction;223
21.3;19.2 Approach;224
21.4;19.3 Results;224
21.4.1;19.3.1 Power Dissipation Models;224
21.4.2;19.3.2 Thermal Models;229
21.5;19.4 Classification in the CRC/TR 96;230
21.6;19.5 Outlook;230
21.7;References;231
22;20 Technical and Economic Benchmarking Guideline for the Compensation and Correction of Thermally Induced Machine Tool Errors;232
22.1;Abstract;232
22.2;20.1 Introduction;232
22.3;20.2 The Benchmarking Model;234
22.3.1;20.2.1 Partial Model ``Machine Tool Configuration'';235
22.3.2;20.2.2 Application Conditions;236
22.3.3;20.2.3 Benchmarking Criteria;238
22.3.3.1;20.2.3.1 Benchmarking Criteria for Benefit Description;238
22.3.3.1.1;Machining Accuracy;238
22.3.3.1.2;Process Quality (Variance);239
22.3.3.1.3;Productivity;240
22.3.3.1.4;Energy Consumption;240
22.3.3.2;20.2.3.2 Benchmarking Criteria Representing Costs;240
22.3.3.2.1;Machine Life Cycle Costs;241
22.3.3.2.2;Engineering Workflows;242
22.4;20.3 Model Application;243
22.5;20.4 Classification in the CRC/TR 96 and Outlook;243
22.6;References;244
23;21 Experimental Analysis of the Thermo-Elastic Behaviour of Machine Tools by Means of Selective Thermography and Close-Range Photogrammetry;246
23.1;Abstract;246
23.2;21.1 Introduction;246
23.3;21.2 Approach;248
23.3.1;21.2.1 Measuring Method of Selective Thermography;248
23.4;21.3 Results;250
23.4.1;21.3.1 Preliminary Investigations and Photogrammetric Deformation and Position Measurements at the Test Bed;250
23.4.2;21.3.2 Development of Software to Execute and Analyse Photogrammetric and Selective Thermographic Measurements;252
23.4.3;21.3.3 Characterisation of Targets and Design of a Procedure to Calibrate a Camera Fixture;252
23.4.4;21.3.4 Selective Thermographic Temperature Measurement of a Machine Column;253
23.4.5;21.3.5 Photogrammetric Measurement of Thermally Affected Displacements on a Hexapod;256
23.5;21.4 Classification of Outcomes in the CRC/TR 96;258
23.6;21.5 Outlook;259
23.7;References;259



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.