E-Book, Englisch, 215 Seiten, eBook
Gross / Gaudet Stochastic Computing: Techniques and Applications
1. Auflage 2019
ISBN: 978-3-030-03730-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 215 Seiten, eBook
ISBN: 978-3-030-03730-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
There are three main parts to this book. The first part, comprising Chapters 1 and 2, provides a history of the technical developments in stochastic computing and a tutorial overview of the field for both novice and seasoned stochastic computing researchers. In the second part, comprising Chapters 3 to 8, we review both well-established and emerging design approaches for stochastic computing systems, with a focus on accuracy, correlation, sequence generation, and synthesis. The last part, comprising Chapters 9 and 10, provides insights into applications in machine learning and error-control coding.
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
Foreword: Gulak.- 1. Introduction to Stochastic Computing (Gaudet, Gross, Smith).- 2. Origins of Stochastic Computing (Gaines).- 3. Tutorial on Stochastic Computing (Winstead).- 4. Accuracy and Correlation in Stochastic Computing (Alaghi, Ting, Lee, Hayes).- 5. Synthesis of Polynomial Functions (Riedel, Qian).- 6. Deterministic Approaches to Bitstream Computing (Riedel).- 7. Generating Stochastic Bitstreams (Hsiao, Anderson, Hara-Azumi).- 8. RRAM Solutions for Stochastic Computing (Knag, Gaba, Lu, Zhang).- 9 Spintronic Solutions for Stochastic Computing (Jia, Wang, Huang, Zhang, Yang, Qu, et al.).- 10. Brain-inspired computing (Onizawa, Gross, Hanyu).- 11. Stochastic Decoding of Error-Correcting Codes (Leduc-Primeau, Hemati, Gaudet, Gross).




