Buch, Englisch, 614 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 949 g
Theory and Applications
Buch, Englisch, 614 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 949 g
Reihe: Springer Series in Statistics
ISBN: 978-1-4419-2046-1
Verlag: Springer US
Multidimensionalscaling(MDS)isatechniquefortheanalysisofsimilarity or dissimilarity data on a set of objects. Such data may be intercorrelations of test items, ratings of similarity on political candidates, or trade indices forasetofcountries.MDSattemptstomodelsuchdataasdistancesamong pointsinageometricspace.Themainreasonfordoingthisisthatonewants a graphical display of the structure of the data, one that is much easier to understand than an array of numbers and, moreover, one that displays the essential information in the data, smoothing out noise. There are numerous varieties of MDS. Some facets for distinguishing among them are the particular type of geometry into which one wants to mapthedata,themappingfunction,thealgorithmsusedto?ndanoptimal data representation, the treatment of statistical error in the models, or the possibility to represent not just one but several similarity matrices at the same time. Other facets relate to the di?erent purposes for which MDS has been used, to various ways of looking at or “interpreting” an MDS representation, or to di?erences in the data required for the particular models. Inthisbook,wegiveafairlycomprehensivepresentationofMDS.Forthe reader with applied interests only, the ?rst six chapters of Part I should be su?cient. They explain the basic notions of ordinary MDS, with an emphasis on how MDS can be helpful in answering substantive questions.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Grafikprogrammierung
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
Weitere Infos & Material
Fundamentals of MDS.- The Four Purposes of Multidimensional Scaling.- Constructing MDS Representations.- MDS Models and Measures of Fit.- Three Applications of MDS.- MDS and Facet Theory.- How to Obtain Proximities.- MDS Models and Solving MDS Problems.- Matrix Algebra for MDS.- A Majorization Algorithm for Solving MDS.- Metric and Nonmetric MDS.- Confirmatory MDS.- MDS Fit Measures, Their Relations, and Some Algorithms.- Classical Scaling.- Special Solutions, Degeneracies, and Local Minima.- Unfolding.- Unfolding.- Avoiding Trivial Solutions in Unfolding.- Special Unfolding Models.- MDS Geometry as a Substantive Model.- MDS as a Psychological Model.- Scalar Products and Euclidean Distances.- Euclidean Embeddings.- MDS and Related Methods.- Procrustes Procedures.- Three-Way Procrustean Models.- Three-Way MDS Models.- Modeling Asymmetric Data.- Methods Related to MDS.