E-Book, Englisch, Band 117, 201 Seiten, eBook
E-Book, Englisch, Band 117, 201 Seiten, eBook
Reihe: Fluid Mechanics and Its Applications
ISBN: 978-3-319-55360-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Preface.- Introduction.- Thermal Relaxation and stability of molecular gas flows.- 1. Physico-mathematical models of relaxing molecular gas flows.- Elements of physical kinetics.- Systems of equations of relaxation gas dynamics.- Parameters of thermal relaxation in diatomic gases.- Absorption of acoustic waves in the relaxation process.- 2. Linear Stability of inviscid plane-parallel flows of vibrationally excited diatomic gases.- Equations of the linear stability theory.- Some general necessary conditions of instability growth.- Growth rates and eigenfunctions of unstable inviscid modes in a free shear flow.- 3. Linear stability of supersonic plane Couette flow of vibrationally excited gas.- Statement of problem and basic equations.- Inviscid stability problem.- Linear stability of supersonic Couette flow at finite Reynolds numbers.- 4. Asymptotic theory of neutral linear stability contours in plane shear flows of a vibrationally excited gas.- Asymptotic solutions of linear stability equations.- Asymptotics of a neutral stability curve of the supersonic Couette flow of a vibrationally excited gas.- 5. Energy theory of nonlinear stability of plane shear flows of thermally nonequilibrium gas.- Energy Stability analysis of a plane compressible flow. Effect of a bulk viscosity.- Energy stability analysis of a plane vibrationally excited flow. Effect of a vibrational relaxation.- 6. Evolution of a large-scale vortex in shear flow of a relaxing molecular gas.- Navier-Stokes model flow. Effect of bulk viscosity.- Effect of a vibrational relaxation on damping vortex structure.- 7. Dissipation of the Kelvin-Helmholts waves in a relaxing molecular gas.- Nonlinear evolution of the Kelvin-Helmholtz instability in the Navie-Stokes model.- Effect of a vibrational relaxation on the Kelvin-Helmholtz instability.