Grefenstette | Genetic Algorithms for Machine Learning | Buch | 978-0-7923-9407-5 | sack.de

Buch, Englisch, 165 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 426 g

Grefenstette

Genetic Algorithms for Machine Learning


1. Auflage 1993
ISBN: 978-0-7923-9407-5
Verlag: Springer Us

Buch, Englisch, 165 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 426 g

ISBN: 978-0-7923-9407-5
Verlag: Springer Us


The articles presented here were selected from preliminary versions presented at the International Conference on Genetic Algorithms in June 1991, as well as at a special Workshop on Genetic Algorithms for Machine Learning at the same Conference.
Genetic algorithms are general-purpose search algorithms that use principles inspired by natural population genetics to evolve solutions to problems. The basic idea is to maintain a population of knowledge structure that represent candidate solutions to the problem of interest. The population evolves over time through a process of competition (i.e. survival of the fittest) and controlled variation (i.e. recombination and mutation).
contains articles on three topics that have not been the focus of many previous articles on GAs, namely concept learning from examples, reinforcement learning for control, and theoretical analysis of GAs. It is hoped that this sample will serve to broaden the acquaintance of the general machine learning community with the major areas of work on GAs. The articles in this book address a number of central issues in applying GAs to machine learning problems. For example, the choice of appropriate representation and the corresponding set of genetic learning operators is an important set of decisions facing a user of a genetic algorithm.
The study of genetic algorithms is proceeding at a robust pace. If experimental progress and theoretical understanding continue to evolve as expected, genetic algorithms will continue to provide a distinctive approach to machine learning.
is an edited volume of original research made up of invited contributions by leading researchers.
Grefenstette Genetic Algorithms for Machine Learning jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Using Genetic Algorithms for Concept Learning.- A Knowledge-Intensive Genetic Algorithm for Supervised Learning.- Competition-Based Induction of Decision Models from Examples.- Genetic Reinforcement Learning for Neurocontrol Problems.- What Makes a Problem Hard for a Genetic Algorithm? Some Anomalous Results and Their Explanation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.