Gray / Fristedt | A Modern Approach to Probability Theory | Buch | 978-0-8176-3807-8 | sack.de

Buch, Englisch, 758 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1320 g

Reihe: Probability and Its Applications

Gray / Fristedt

A Modern Approach to Probability Theory


1997
ISBN: 978-0-8176-3807-8
Verlag: Birkhäuser Boston

Buch, Englisch, 758 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1320 g

Reihe: Probability and Its Applications

ISBN: 978-0-8176-3807-8
Verlag: Birkhäuser Boston


Students and teachers of mathematics and related fields will find in this second edition, as previously, a comprehensive and modern approach to probability theory, providing the background and techniques to go from the beginning graduate level to the point of specialization in research areas of current interest. The book is designed for a two- or three-semester course, assuming only courses in undergraduate real analysis or rigorous advanced calculus, and some elementary linear algebra. A variety of applications—Bayesian statistics, financial mathematics, information theory, tomography, and signal processing—appear as threads to both enhance the understanding of the relevant mathematics and motivate students whose main interests are outside of pure areas.

Gray / Fristedt A Modern Approach to Probability Theory jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


List of Tables * Preface * Part I: Probability Spaces, Random Variables, and Expectations * Probability Spaces * Random Variables * Distribution Functions * Expectations: Theory * Expectations: Applications * Calculating Probabilities and Measures * Measure Theory: Existence and Uniqueness * Integration Theory * Part 2: Independence and Sums * Stochastic Independence * Sums of Independent Random Variables * Random Walk * Theorems of A.S. Convergence * Characteristic Functions * Part 3: Convergence in Distribution * Convergence in Distribution on the Real Line * Distributional Limit Theorems for Partial Sums * Infinitely Divisible and Stable Distributions as Limits * Convergence in Distribution on Polish Spaces * The Invariance Principle and Brownian Motion * Part 4: Conditioning * Spaces of Random Variables * Conditional Probabilities * Construction of Random Sequences * Conditional Expectations * Part 5: Random Sequences * Martingales * Renewal Sequences * Time-homogeneous Markov Sequences * Exchangeable Sequences * Stationary Sequences * Part 6: Stochastic Processes * Point Processes * Diffusions and Stochastic Calculus * Applications of Stochastic Calculus * Part 7: Appendices * Appendix A. Notation and Usage of Terms * Appendix B. Metric Spaces * Appendix C. Topological Spaces * Appendix D. Riemann–Stieltjes Integration * Appendix E. Taylor Approximations, C-Valued Logarithms * Appendix F. Bibliography * Appendix G. Comments and Credits * Index



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.