Graves-Morris / Saff / Varga | Rational Approximation and Interpolation | E-Book | sack.de
E-Book

E-Book, Englisch, Band 1105, 530 Seiten, eBook

Reihe: Lecture Notes in Mathematics

Graves-Morris / Saff / Varga Rational Approximation and Interpolation

Proceedings of the United Kingdom - United States Conference, held at Tampa, Florida, December 12-16, 1983
Erscheinungsjahr 2006
ISBN: 978-3-540-39113-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the United Kingdom - United States Conference, held at Tampa, Florida, December 12-16, 1983

E-Book, Englisch, Band 1105, 530 Seiten, eBook

Reihe: Lecture Notes in Mathematics

ISBN: 978-3-540-39113-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Graves-Morris / Saff / Varga Rational Approximation and Interpolation jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


The faber operator.- Survey on recent advances in inverse problems of Padé approximation theory.- Some properties and applications of Chebyshev polynomial and rational approximation.- Polynomial, sinc and rational function methods for approximating analytic functions.- Rational approximation of fractals.- On rational approximation of the exponential and the square root function.- Padé-type approximants and linear functional transformations.- Continued fraction solution of the general Riccati equation.- Order stars, contractivity and a pick-type theorem.- Bernstein and markov inequalities for constrained polynomials.- Multivariate interpolation.- The strong uniqueness constant in complex approximation.- On the minimum moduli of normalized polynomials.- On the block structure of the Laurent-Padé table.- Square blocks and equioscillation in the Padé, walsh, and cf tables.- Properties of Padé approximants to stieltjes series and systems theory.- Degree of rational approximation in digital filter realization.- Applications of schur fractions to digital filtering and signal processing.- A de montessus theorem for vector valued rational interpolants.- On the convergence of limit periodic continued fractions K(an/1), where a1 ? ?1/4.- On the uniform approximation of holomorphic functions on convex sets by means of interpolation polynomials.- On equiconvergence of certain sequences of rational interpolants.- Convergence and divergence of multipoint padé approximants of meromorphic functions.- Approximate analytic continuation beyond the first Riemann sheet.- Critical exponents for the general spin ising model using the rational approximation method.- Partial differential approximants and the elucidation of multisingularities.- Zeros of polynomials generated by 4-termrecurrence relations.- A lower bound for the number of zeros of a function analytic in a disk.- Location of poles of Padé approximants to entire functions.- Approximations to ex arising in the numerical analysis of volterra equations.- Error evaluation for cubic bessel interpolation.- Extended numerical computations on the “1/9” conjecture in rational approximation theory.- Computing with the faber transform.- A-stable methods for second order differential systems and their relation to Padé approximants.- Shape preserving rational spline interpolation.- An application of gaussian elimination to interpolation by generalized rational functions.- Problems in numerical chebyshev approximation by interpolating rationals.- Exponential fitting of restricted rational approximations to the exponential function.- Quadrature formulae and moment problems.- Discrete ?p approximation by rational functions.- What is beyond Szegö's theory of orthogonal polynomials?.- Polynomials with laguerre weights in Lp.- Orthogonal polynomials for general measures-I.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.