Grafarend / Syffus / You | Map Projections | Buch | 978-3-642-36493-8 | sack.de

Buch, Englisch, 935 Seiten, Format (B × H): 215 mm x 285 mm, Gewicht: 2893 g

Grafarend / Syffus / You

Map Projections

Cartographic Information Systems
2. Auflage 2014
ISBN: 978-3-642-36493-8
Verlag: Springer

Cartographic Information Systems

Buch, Englisch, 935 Seiten, Format (B × H): 215 mm x 285 mm, Gewicht: 2893 g

ISBN: 978-3-642-36493-8
Verlag: Springer


In the context of Geographical Information Systems (GIS) the book offers a timely review of Map Projections. The first chapters are of foundational type. We introduce the mapping from a left Riemann manifold to a right one specified as conformal, equiaerial and equidistant, perspective and geodetic. In particular, the mapping from a Riemann manifold to a Euclidean manifold ("plane") and the design of various coordinate systems are reviewed . A speciality is the treatment of surfaces of Gaussian curvature zero. The largest part is devoted to the mapping the sphere and the ellipsoid-of-revolution to tangential plane, cylinder and cone (pseudo-cone) using the polar aspect, transverse as well as oblique aspect. Various Geodetic Mappings as well as the Datum Problem are reviewed. In the first extension we introduce optimal map projections by variational calculus for the sphere, respectively the ellipsoid generating harmonic maps. The second extension reviews alternative maps for structures , namely torus (pneu), hyperboloid (cooling tower), paraboloid (parabolic mirror), onion shape (church tower) as well as clothoid (Hight Speed Railways) used in Project Surveying. Third, we present the Datum Transformation described by the Conformal Group C10 (3) in a threedimensional Euclidean space , a ten parameter conformal transformation. It leaves infinitesimal angles and distance ratios equivariant. Numerical examples from classical and new map projections as well as twelve appendices document the Wonderful World of Map Projections.

Grafarend / Syffus / You Map Projections jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


From the Contents: From Riemann manifolds to Riemann manifolds.- From Riemann manifolds to Euclidean manifolds.- Coordinates.- Surfaces of Gaussian curvature zero.- Sphere to tangential plane': polar (normal) aspect.- Sphere to tangential plane': transverse aspect.- Sphere to tangential plane: oblique aspect.- Ellipsoid-of-revolution to tangential plane.- Ellipsoid-of-revolution to sphere and from sphere to plane.- Sphere to cylinder: polar aspect.- Sphere to cylinder: transverse aspect.


Prof. Dr. Erik W. Grafarend, Stuttgart University, Stuttgart, Germany email: grafarend@gis.uni-stuttgart.de

Prof. Dr.-Ing. Rey-Jer You, National Cheng Kung University, Tainan, Taiwan Dipl.-Ing.

Rainer Syffus, ESG Elektroniksystem- und Logistik GmbH, Fuerstenfeldbruck, Germany



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.