Gouverneur | Machine Learning Methods for Pain Investigation Using Physiological Signals | Buch | 978-3-8325-5827-7 | sack.de

Buch, Englisch, 220 Seiten, PB, Format (B × H): 170 mm x 240 mm

Reihe: Human data understanding

Gouverneur

Machine Learning Methods for Pain Investigation Using Physiological Signals


Erscheinungsjahr 2024
ISBN: 978-3-8325-5827-7
Verlag: Logos

Buch, Englisch, 220 Seiten, PB, Format (B × H): 170 mm x 240 mm

Reihe: Human data understanding

ISBN: 978-3-8325-5827-7
Verlag: Logos


Pain assessment has remained largely unchanged for decades and is currently based on self-reporting. Although there are different versions, these self-reports all have significant drawbacks. For example, they are based solely on the individual’s assessment and are therefore influenced by personal experience and highly subjective, leading to uncertainty in ratings and difficulty in comparability. Thus, medicine could benefit from an automated, continuous and objective measure of pain. One solution is to use automated pain recognition in the form of machine learning. The aim is to train learning algorithms on sensory data so that they can later provide a pain rating. This thesis summarises several approaches to improve the current state of pain recognition systems based on physiological sensor data. First, a novel pain database is introduced that evaluates the use of subjective and objective pain labels in addition to wearable sensor data for the given task. Furthermore, different feature engineering and feature learning approaches are compared using a fair framework to identify the best methods. Finally, different techniques to increase the interpretability of the models are presented. The results show that classical hand-crafted features can compete with and outperform deep neural networks. Furthermore, the underlying features are easily retrieved from electrodermal activity for automated pain recognition, where pain is often associated with an increase in skin conductance.

Gouverneur Machine Learning Methods for Pain Investigation Using Physiological Signals jetzt bestellen!


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.