Gossard / Dubuc / Kolta | Breathe, Walk and Chew | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 187, 248 Seiten

Reihe: Progress in Brain Research

Gossard / Dubuc / Kolta Breathe, Walk and Chew

The Neural Challenge: Part I
1. Auflage 2010
ISBN: 978-0-444-53623-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

The Neural Challenge: Part I

E-Book, Englisch, Band Volume 187, 248 Seiten

Reihe: Progress in Brain Research

ISBN: 978-0-444-53623-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



This volume focuses on the interplay of mind and motion-the bidirectional link between thought and action. In particular, it investigates the implications that this coupling has for decision making. How do we anticipate the consequences of choices and how is the brain able to represent these choice options and their potential consequences? How are different options evaluated and how is a preferred option selected and implemented? This volume addresses these questions not only through an extensive body of knowledge consisting of individual chapters by international experts, but also through integrative group reports that pave a runway into the future. The understanding of how people make decisions is of common interest to experts working in fields such as psychology, economics, movement science, cognitive neuroscience, neuroinformatics, robotics, and sport science. So far, however, it has mainly been advanced in isolation within distinct research disciplines; in contrast, this book results from a deliberate assembly of multidisciplinary teams. It offers intense, focused, and genuine interdisciplinary perspective. It conveys state-of-the-art and outlines future research directions on the hot topic of Mind and Motion (or embodied cognition). It includes contributions from psychologists, neuroscientists, movement scientists, economists, and others.

Gossard / Dubuc / Kolta Breathe, Walk and Chew jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Progress in Brain Research: Breathe, Walk and Cheq: The Neural Challenge: Part I;4
3;Copyright Page;5
4;List of Contributors;6
5;Preface;8
6;In Memoriam;10
7;Contents;12
8;Section 1: Genetic factors determining the functional organization of neural circuits controlling rhythmic movements;12
8.1;Chapter 1: Once upon a timehellip hellipthe early concepts of breathing, walking, and chewing;14
8.1.1;Introduction;14
8.1.2;Measurement of rhythmic movements and first elements of biomechanics;15
8.1.3;The central control of movements;17
8.1.4;Reflex function and its generalization;21
8.1.5;Conclusion;26
8.1.6;Acknowledgments;26
8.1.7;References;26
8.2;Chapter 2: Genetic dissection of rhythmic motor networks in mice;32
8.2.1;Rhythmic motor circuits in the hindbrain and spinal cord;33
8.2.2;The developmental program of the caudal neuroaxis;33
8.2.3;Genetically defined interneuronal populations that shape the locomotor rhythm;38
8.2.4;New genetic approaches for studying motor circuits in the spinal cord;41
8.2.5;Conclusion;46
8.2.6;Acknowledgments;47
8.2.7;References;47
8.3;Chapter 3: Genetic factors determining the functional organization of neural circuits controlling rhythmic movements: the murine embryonic parafacial rhythm generator;52
8.3.1;Introduction;52
8.3.2;Molecular identification of central oscillators during embryonic development: the e-pF oscillator;53
8.3.3;Odd rhombomeric (Egr2/Krox20, Hox) patterning of the parafacial hindbrain;54
8.3.4;The paired-like homeobox 2b (Phox2b) gene, a visceral cell-type fingerprint in respiratory control: link with central chemosensitivity and the congenital central hyperventilation syndrome;55
8.3.5;The e-pF expresses the proneural mouse atonal homolog 1 (Atoh1/Math 1);55
8.3.6;Perspective: the spinal connection;56
8.3.7;Perspective: insertion of inhibitory interneurons;57
8.3.8;Perspective: the pre-Bötzinger complex;57
8.3.9;Acknowledgments;58
8.3.10;References;58
8.4;Chapter 4: Development of motor rhythms in zebrafish embryos;60
8.4.1;Introduction;60
8.4.2;Morphology of the embryonic zebrafish spinal cord;61
8.4.3;Physiology and pharmacology of slow rhythms;63
8.4.4;Physiology and pharmacology of evoked rhythms;65
8.4.5;Physiology and pharmacology of embryonic swimming rhythms;66
8.4.6;Increasing the frequency of swimming in larvae;67
8.4.7;Rhythm mutants;68
8.4.8;Future research;69
8.4.9;Summary;69
8.4.10;Acknowledgments;70
8.4.11;References;70
8.5;Chapter 5: Limb, respiratory, and masticatory muscle compartmentalization: Developmental and hormonal considerations;76
8.5.1;Introduction;76
8.5.2;Neuromuscular compartmentalization of muscle;77
8.5.3;Central partitioning of motoneurons innervating neuromuscular compartments;81
8.5.4;Development of neuromuscular compartments;85
8.5.5;Hormonal influences on compartment muscle phenotype;87
8.5.6;Summary;89
8.5.7;Acknowledgments;90
8.5.8;References;90
8.6;Chapter 6: Spinal interneurons providing input to the final common path during locomotion;94
8.6.1;Introduction;94
8.6.2;Last-order inhibitory interneurons;96
8.6.3;Last-order excitatory interneurons;100
8.6.4;Spinal modulatory neurons;102
8.6.5;Concluding remarks;103
8.6.6;Acknowledgments;103
8.6.7;References;103
9;Section 2: Ionic and neuronal mechanisms responsible for rhythmogenesis;110
9.1;Chapter 7: Beyond connectivity of locomotor circuitry-ionic and modulatory mechanisms;112
9.1.1;Introduction;112
9.1.2;Unit burst generation in the spinal cord;113
9.1.3;Organization of the locomotor network;114
9.1.4;Calcium-a pivotal current for firing and release of transmitter;115
9.1.5;Potassium-currents shaping action potentials;115
9.1.6;KNa channels-a built-in feedback system;116
9.1.7;Embedded modulation-setting the baseline locomotor frequency;117
9.1.8;Plasticity in the spinal cord-contribution of endocannabinoids and NO;119
9.1.9;Common mechanisms with other model systems;119
9.1.10;Conclusion;119
9.1.11;Acknowledgments;120
9.1.12;References;120
9.2;Chapter 8: Synaptically activated burst-generating conductances may underlie a group-pacemaker mechanism for respiratory rhythm generation in mammals;124
9.2.1;Introduction;125
9.2.2;Rhythmic motor behaviors studied in vitro;125
9.2.3;Role of pacemaker properties in respiratory rhythmogenesis;127
9.2.4;Role of synaptically triggered burst-generating conductances in respiratory rhythmogenesis;134
9.2.5;Group-pacemaker hypothesis of respiratory rhythm generation;141
9.2.6;Conclusions;143
9.2.7;Acknowledgments;144
9.2.8;References;144
9.3;Chapter 9: Modulation of rhythmogenic properties of trigeminal neurons contributing to the masticatory CPG;150
9.3.1;Boundaries and components of the CPG;151
9.3.2;Development of bursting properties in relation to mastication;152
9.3.3;Mechanisms of rhythmogenesis;153
9.3.4;Pattern variability and sensory modulation of CPGs;154
9.3.5;Putative cellular mechanisms underlying sensory modulation of bursting in NVsnpr neurons;154
9.3.6;Conclusion;157
9.3.7;Acknowledgment;157
9.3.8;References;158
9.4;Chapter 10: Axial dynamics during locomotion in vertebrates: lesson from the salamander;162
9.4.1;Introduction;162
9.4.2;Diversity and variability of axial locomotor patterns;163
9.4.3;Neural mechanisms underlying the flexibility of axial networks;169
9.4.4;Conclusion;171
9.4.5;Acknowledgment;171
9.4.6;References;171
9.5;Chapter 11: Recruitment of masseter motoneurons by the presumed spindle Ia inputs;176
9.5.1;Development of isometric contraction during the slow-closing phase;177
9.5.2;Orderly recruitment of masseter motoneurons during isometric contraction by the activity of ?-motoneurons;177
9.5.3;Specialized stretch reflex circuit of jaw-closing muscles;178
9.5.4;Recruitment of jaw-closing motoneurons by temporal summation and facilitation of Ia inputs;180
9.5.5;Orderly recruitment of jaw-closing motoneurons by Ia-EPSPs;180
9.5.6;Possible involvements of leak K+ channels, TASK1/3, in IR-ordered recruitment;181
9.5.7;Modulation of orderly recruitment by alteration of TASK channels activity;181
9.5.8;References;182
9.6;Chapter 12: The interactions between locomotion and respiration;186
9.6.1;Introduction;186
9.6.2;Conclusions;197
9.6.3;Acknowledgments;197
9.6.4;References;197
9.7;Chapter 13: Rhythmogenesis in axial locomotor networks: an interspecies comparison;202
9.7.1;Introduction;202
9.7.2;Locomotor behavior;203
9.7.3;Spinal neurons;205
9.7.4;The role of spinal neurons in rhythm generation;207
9.7.5;Conclusions;214
9.7.6;Acknowledgments;216
9.7.7;References;216
9.8;Chapter 14: General Principles of Rhythmogenesis in Central Pattern Generator Networks;226
9.8.1;Neuronal or network oscillators?;227
9.8.2;Principle I: instead of thinking about rhythmic neurons or circuits, consider rhythmogenic ionic currents;227
9.8.3;Principle II: synaptic currents do not simply depolarize of hyperpolarize the cell by rapid synaptic action, but can also evoke nonlinear membrane responses;230
9.8.4;Principle III: there are multiple mechanisms for rhythm generation in any system, which could vary with age, species, and modulatory state;231
9.8.5;Principle IV: it may not be only neurons: the possible role of glial cells;232
9.8.6;Conclusion;233
9.8.7;Acknowledgments;233
9.8.8;References;233
10;Subject Index;236
11;Other volumes in Progress in brain Research;242



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.