Buch, Englisch, Band 2560, 146 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 260 g
Buch, Englisch, Band 2560, 146 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 260 g
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-540-00325-0
Verlag: Springer Berlin Heidelberg
Speech recognition technology is being increasingly employed in human-machine interfaces. A remaining problem however is the robustness of this technology to non-native accents, which still cause considerable difficulties for current systems.
In this book, methods to overcome this problem are described. A speaker adaptation algorithm that is capable of adapting to the current speaker with just a few words of speaker-specific data based on the MLLR principle is developed and combined with confidence measures that focus on phone durations as well as on acoustic features. Furthermore, a specific pronunciation modelling technique that allows the automatic derivation of non-native pronunciations without using non-native data is described and combined with the previous techniques to produce a robust adaptation to non-native accents in an automatic speech recognition system.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsvisualisierung
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Mathematik | Informatik EDV | Informatik Informatik Tonsignalverarbeitung
Weitere Infos & Material
ASR:AnOverview.- Pre-processing of the Speech Data.- Stochastic Modelling of Speech.- Knowledge Bases of an ASR System.- Speaker Adaptation.- Confidence Measures.- Pronunciation Adaptation.- Future Work.- Summary.- Databases and Experimental Settings.- MLLR Results.- Phoneme Inventory.