Gorodski | Smooth Manifolds | E-Book | sack.de
E-Book

E-Book, Englisch, 154 Seiten, eBook

Reihe: Compact Textbooks in Mathematics

Gorodski Smooth Manifolds


Erscheinungsjahr 2020
ISBN: 978-3-030-49775-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 154 Seiten, eBook

Reihe: Compact Textbooks in Mathematics

ISBN: 978-3-030-49775-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This concise and practical textbook presents the essence of the theory on smooth manifolds. A key concept in mathematics, smooth manifolds are ubiquitous: They appear as Riemannian manifolds in differential geometry; as space-times in general relativity; as phase spaces and energy levels in mechanics; as domains of definition of ODEs in dynamical systems; as Lie groups in algebra and geometry; and in many other areas. The book first presents the language of smooth manifolds, culminating with the Frobenius theorem, before discussing the language of tensors (which includes a presentation of the exterior derivative of differential forms). It then covers Lie groups and Lie algebras, briefly addressing homogeneous manifolds. Integration on manifolds, explanations of Stokes’ theorem and de Rham cohomology, and rudiments of differential topology complete this work. It also includes exercises throughout the text to help readers grasp the theory, as well as more advanced problems for challenge-oriented minds at the end of each chapter. Conceived for a one-semester course on Differentiable Manifolds and Lie Groups, which is offered by many graduate programs worldwide, it is a valuable resource for students and lecturers alike.

Gorodski Smooth Manifolds jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Preface.- Smooth manifolds.- Tensor fields and differential forms.- Lie groups.- Integration.- Appendix A: Covering manifolds.- Appendix B: Hodge Theory.- Bibliography.- Index.


Claudio Gorodski is a Full Professor at the Institute of Mathematics and Statistics, University of São Paulo, Brazil. He holds a PhD in Mathematics (1992) from the University of California at Berkeley, USA, and a Habilitation degree (1998) from the University of São Paulo, Brazil. His research interests include Lie transformation groups in Riemannian geometry, geometry of submanifolds, Riemannian symmetric spaces, and sub-Riemannian geometry.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.