Gordon / Kim / Finch | Heterogeneity in Statistical Genetics | Buch | 978-3-030-61120-0 | sack.de

Buch, Englisch, 352 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 723 g

Reihe: Statistics for Biology and Health

Gordon / Kim / Finch

Heterogeneity in Statistical Genetics

How to Assess, Address, and Account for Mixtures in Association Studies
1. Auflage 2020
ISBN: 978-3-030-61120-0
Verlag: Springer International Publishing

How to Assess, Address, and Account for Mixtures in Association Studies

Buch, Englisch, 352 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 723 g

Reihe: Statistics for Biology and Health

ISBN: 978-3-030-61120-0
Verlag: Springer International Publishing


Heterogeneity, or mixtures, are ubiquitous in genetics. Even for data as simple as mono-genic diseases, populations are a mixture of affected and unaffected individuals. Still, most statistical genetic association analyses, designed to map genes for diseases and other genetic traits, ignore this phenomenon.

In this book, we document methods that incorporate heterogeneity into the design and analysis of genetic and genomic association data. Among the key qualities of our developed statistics is that they include mixture parameters as part of the statistic, a unique component for tests of association. A critical feature of this work is the inclusion of at least one heterogeneity parameter when performing statistical power and sample size calculations for tests of genetic association.

We anticipate that this book will be useful to researchers who want to estimate heterogeneity in their data, develop or apply genetic association statistics where heterogeneity exists, and accurately evaluate statistical power and sample size for genetic association through the application of robust experimental design.
Gordon / Kim / Finch Heterogeneity in Statistical Genetics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Introduction to heterogeneity in statistical genetics.- 2. Overview of genomic heterogeneity in statistical genetics.- 3. Phenotypic heterogeneity.- 4. Association tests allowing for heterogeneity.- 5. Designing genetic linkage and association studies that maintain desired statistical power in the presence of mixtures.- 6. Threshold-selected quantitative trait loci and pleiotropy.- Index.



Derek Gordon, PhD, is Associate Professor in the Department of Genetics at Rutgers, The State University of New Jersey, and is Full Academic Member of the Human Genetics Institute of New Jersey. For more than a decade, Dr. Gordon has served on the Editorial Board of the journal Human Heredity. From 2004 to 2013, Dr. Gordon was the Managing Editor for this journal. Currently, Dr. Gordon serves on the Editorial Board of the online journal BMC Bioinformatics. He has maintained a role as statistical genetics consultant to researchers in industry and academia for several decades.

Stephen J. Finch, PhD, is Professor in the Department of Applied Mathematics and Statistics at Stony Brook University. Professor Finch is co-author of the book, Data Collection in Adoption and Foster Care: The State of the Art in Obtaining Organized Information for Policy Analysis, Program Planning, and Practice (1991, with Fanshel and Grundy), and for several decades has served as statistical consultant to research teams performing longitudinal studies of adolescent social behavior.

Wonkuk Kim is Assistant Professor of Applied Statistics at Chung-Ang University in Korea. His research concerns mixture model-based genetic association and latent trajectory analysis of longitudinal data.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.