Buch, Englisch, 348 Seiten, Paperback, Format (B × H): 178 mm x 254 mm, Gewicht: 1390 g
Buch, Englisch, 348 Seiten, Paperback, Format (B × H): 178 mm x 254 mm, Gewicht: 1390 g
Reihe: Advanced Courses in Mathematics - CRM Barcelona
ISBN: 978-3-7643-6714-5
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Topologie Algebraische Topologie
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Mathematik | Informatik Mathematik Algebra Elementare Algebra
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
Weitere Infos & Material
Preface.- I. BACKGROUND AND BEGINNINGS.- I.1. Beginnings and first examples.- I.2. Further quantized coordinate rings.- I.3. The quantized enveloping algebra of sC2(k).- I.4. The finite dimensional representations of Uq(5r2(k)).- I.5. Primer on semisimple Lie algebras.- I.6. Structure and representation theory of Uq(g) with q generic.- I.7. Generic quantized coordinate rings of semisimple groups.- I.8. 0q(G) is a noetherian domain.- I.9. Bialgebras and Hopf algebras.- I.10. R-matrices.- I.11. The Diamond Lemma.- I.12. Filtered and graded rings.- I.13. Polynomial identity algebras.- I.14. Skew polynomial rings satisfying a polynomial identity.- I.15. Homological conditions.- I.16. Links and blocks.- II. GENERIC QUANTIZED COORDINATE RINGS.- II.1. The prime spectrum.- II.2. Stratification.- II.3. Proof of the Stratification Theorem.- II.4. Prime ideals in 0q (G).- II.5. H-primes in iterated skew polynomial algebras.- II.6. More on iterated skew polynomial algebras.- II.7. The primitive spectrum.- II.8. The Dixmier-Moeglin equivalence.- II.9. Catenarity.- II.10. Problems and conjectures.- III. QUANTIZED ALGEBRAS AT ROOTS OF UNITY.- III.1. Finite dimensional modules for affine PI algebras.- 1II.2. The finite dimensional representations of UE(5C2(k)).- II1.3. The finite dimensional representations of OE(SL2(k)).- III.4. Basic properties of PI Hopf triples.- III.5. Poisson structures.- 1II.6. Structure of U, (g).- III.7. Structure and representations of 0,(G).- III.8. Homological properties and the Azumaya locus.- II1.9. Müller’s Theorem and blocks.- III.10. Problems and perspectives.