E-Book, Englisch, 241 Seiten
Reihe: Industrial Electronics
Gonzalez / Verne / Valla Multilevel Converters for Industrial Applications
1. Auflage 2013
ISBN: 978-1-4398-9562-7
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 241 Seiten
Reihe: Industrial Electronics
ISBN: 978-1-4398-9562-7
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Modern semiconductor devices have reached high current and voltage levels, and their power-handling limits can be extended if they are used in multilevel converter configurations. To create high-performance and reliable control designs, however, engineers need in-depth understanding of the characteristics and operation of these topologies. Multilevel Converters for Industrial Applications presents a thorough and comprehensive analysis of multilevel converters with a common DC voltage source. The book offers a novel perspective to help readers understand the principles of the operation of voltage-source multilevel converters as power processors, and their capabilities and limitations.
The book begins with an overview of medium-voltage power converters and their applications. It then analyzes the topological characteristics of the diode-clamped multilevel converter, the flying capacitor multilevel converter, and the asymmetric cascaded multilevel converter. For each topology, the authors highlight particular control issues and design trade-offs. They also develop relevant modulation and control strategies. Numerous graphical representations aid in the analysis of the topologies and are useful for beginning the analysis of new multilevel converter topologies.
The last two chapters of the book explore two case studies that analyze the behavior of the cascade asymmetric multilevel converter as a distribution static compensator and shunt active power filter, and the behavior of the diode-clamped topology configured as a back-to-back converter. These case studies demonstrate how to address the associated control problems with advanced control and modulation schemes.
Examining recent advances, this book provides deep insight on the design of high-power multilevel converters and their applications. It is a valuable reference for anyone interested in medium-voltage power conversion, which is increasingly being used in industry and in renewable energy and distributed generation systems to improve efficiency and operation flexibility.
Zielgruppe
Engineers, researchers, and graduate students working with industrial electronics, power electronics, or power system control for industrial applications and renewable energy.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Introduction
Introduction
Medium-Voltage Power Converters
Multilevel Converters
Applications
Aim of the Book
References
Multilevel Topologies
Introduction
Generalized Topology with a Common DC Bus
Converters Derived from the Generalized Topology
Symmetric Topologies without a Common DC Link
Summary of Symmetric Topologies
Asymmetric Topologies
Summary
References
Diode-Clamped Multilevel Converter
Introduction
Converter Structure and Functional Description
Modulation of Multilevel Converters
Voltage Balance Control
Effectiveness Boundary of Voltage Balancing in DCMC Converters
Performance Results
Summary
References
Flying Capacitor Multilevel Converter
Introduction
Flying Capacitor Topology
Modulation Scheme for the FCMC
Dynamic Voltage Balance of the FCMC
Summary
References
Cascade Asymmetric Multilevel Converter
Introduction
General Characteristics of the CAMC
CAMC Three-Phase Inverter
Comparison of the Five-Level Topologies
Summary
References
Case Study 1: DSTATCOM Built with a Cascade Asymmetric Multilevel Converter
Introduction
Compensation Principles
CAMC Model
Reactive Power and Harmonics Compensation
Summary
References
Case Study 2: Medium-Voltage Motor Drive Built with DCMC
Introduction
Back-to-Back DCMC Converter
Unified Predictive Controller of the Back-to-Back DCMC in an IM Drive Application
Performance Evaluation
Summary
References
Index