Gong / Song / Wang | AI 2024: Advances in Artificial Intelligence | Buch | 978-981-960350-3 | sack.de

Buch, Englisch, Band 15443, 460 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 721 g

Reihe: Lecture Notes in Computer Science

Gong / Song / Wang

AI 2024: Advances in Artificial Intelligence

37th Australasian Joint Conference on Artificial Intelligence, AI 2024, Melbourne, VIC, Australia, November 25-29, 2024, Proceedings, Part II
Erscheinungsjahr 2024
ISBN: 978-981-960350-3
Verlag: Springer Nature Singapore

37th Australasian Joint Conference on Artificial Intelligence, AI 2024, Melbourne, VIC, Australia, November 25-29, 2024, Proceedings, Part II

Buch, Englisch, Band 15443, 460 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 721 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-981-960350-3
Verlag: Springer Nature Singapore


This two-volume set LNAI 15442-15443 constitutes the refereed proceedings of the 37th Australasian Joint Conference on Artificial Intelligence, AI 2024, held in Melbourne, VIC, Australia, during November 25-29, 2024.
The 59 full papers presented together with 3 short papers were carefully reviewed and selected from 108 submissions.

Part 1: Knowledge Representation and NLP; Trustworthy and Explainable AI; Machine Learning and Data Mining.
Part 2: Reinforcement Learning and Robotics; Learning Algorithms; Computer Vision; AI for Healthcare.

Gong / Song / Wang AI 2024: Advances in Artificial Intelligence jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Reinforcement Learning and Robotics.
.- ECoDe: A Sample-Efficient Method for Co-Design of Robotic Agents.
.- Causally driven hierarchies for Feudal Multi-Agent Reinforcement Learning.
.- Graceful Task Adaptation with a Bi-Hemispheric RL Agent.
.- Towards Virtual Character Control via Partial Story Sifting.
.- Boosting Reinforcement Learning Algorithms in Continuous Robotic Reaching Tasks using Adaptive Potential Functions.
.- Online Deep Reinforcement Learning of Servo Control for a Small-Scale Bio-Inspired Wing.
.- Posterior Tracking Algorithm for Multi-objective Classification Bandits.
.- Learning Algorithms
.- Approximate Nearest Neighbour Search on Dynamic Datasets: An Investigation.
.- Pathwise Gradient Variance Reduction with Control Variates in Variational Inference.
.- Active Continual Learning: On Balancing Knowledge Retention and Learnability.
.- Bayesian Parametric Proportional Hazards Regression with the Fused Lasso.
.- Revisiting Bagging for Stochastic Algorithms.
.- Sampling of Large Probabilistic Graphical Models Using Arithmetic Circuits.
.- Importance-based Pruning for Genetic Programming based Symbolic Regression.
.- Quantifying Manifolds: Do the Manifolds Learned by Generative Adversarial Networks Converge to the Real Data Manifold?.
.- Equality Generating Dependencies in Description Logics via Path Agreements.
.- Computer Vision
.- End-to-end Truck Speed Detection using Deep Multi-Task Learning.
.- Real-Time Lightweight 3D Hand-Object Pose Estimation Using Temporal Graph Convolution Networks.
.- New Perspectives for the Deep Learning Based Photography Aesthetics Assessment.
.- 3DSSG-Cap: A Caption Enhanced Dataset for 3D Visual Grounding.
.- Multi-scale Cooperative Multimodal Transformers for Multimodal Sentiment Analysis in Videos.
.- Chain of Thought Prompting in Vision-Language Model for Vision Reasoning Tasks.
.- Enabling Visual Intelligence by Leveraging Visual Object States in a Neurosymbolic Framework.
.- AI for Healthcare
.- A Self-Adaptive Framework for Efficient Cell Detection and Segmentation in Histopathological
Images with Minimal Expert Input.
.- Learning Low-Energy Consumption Obstacle Detection Models for the Blind.
.- Claimsformer: Pretrained Transformer for Administrative Claims Data to Predict Chronic Conditions.
.- Online Machine Learning for Real-Time Cell Culture Process Monitoring.
.- Motif-induced Subgraph Generative Learning for Explainable Neurological Disorder Detection.
.- Multimodal Hyperbolic Graph Learning for Alzheimer’s Disease Detection.
.- Real-Time Human Activity Recognition Using Non-Intrusive Sensing and Continual Learning.
.- Unsupervised dMRI Artifact Detection via Angular Resolution Enhancement and Cycle Consistency Learning.
.- Assessment of Left Atrium Motion Deformation Through Full Cardiac Cycle.
.- Vision-Based Abnormal Action Dataset for Recognising Body Motion Disorders.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.