Buch, Englisch, 864 Seiten, Format (B × H): 208 mm x 260 mm, Gewicht: 2042 g
Buch, Englisch, 864 Seiten, Format (B × H): 208 mm x 260 mm, Gewicht: 2042 g
ISBN: 978-1-259-64383-5
Verlag: McGraw-Hill Education
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.A complete toolkit for teaching, learning, and understanding the essential concepts of automatic control systemsEdition after acclaimed edition, Automatic Control Systems has delivered up-to-date, real-world coverage designed to introduce students to the fundamentals of control systems. More than a comprehensive text, Automatic Control Systems includes innovative virtual labs that replicate physical systems and sharpen readers’ problem-solving skills. The Tenth Edition introduces the concept of Control Lab, which includes two classes of experiments: SIMLab (model-based simulation) and LEGOLab (physical experiments using LEGO® robots). These experiments are intended to supplement, or replace, the experimental exposure of the students in a traditional undergraduate control course and will allow these students to do their work within the MATLAB® and Simulink® environment—even at home. This cost-effective approach may allow educational institutions to equip their labs with a number of LEGO test beds and maximize student access to the equipment at a fraction of the cost of currently available control system experiments. Alternatively, as a supplemental learning tool, students can take the equipment home and learn at their own pace.This new edition continues a tradition of excellence with:• A greater number of solved examples
• Online labs using both LEGO MINDSTORMS® and MATLAB/SIMLab
• Enhancements to the easy-to-use MATLAB GUI software (ACSYS) to allow interface with LEGO MINDSTORMS
• A valuable introduction to the concept of Control Lab
• A logical organization, with Chapters 1 to 3 covering all background material and Chapters 4 to 11 presenting material directly related to the subject of control
• 10 online appendices, including Elementary Matrix Theory and Algebra, Control Lab, Difference Equations, and Mathematical Foundation
• A solutions manual is available to instructors Adopted by hundreds of universities and translated into at least nine languages, Automatic Control Systems remains the single-best resource for students to gain a practical understanding of the subject and to prepare them for the challenges they will one day face. For practicing engineers, it represents a clear, thorough, and current self-study resource that they will turn to again and again throughout their career. LEGO and MINDSTORMS are registered trademarks of the LEGO GroupMATLAB and Simulink are registered trademarks of The MathWorks, Inc.
Autoren/Hrsg.
Weitere Infos & Material
Preface
CHAPTER 1 Introduction to Control Systems
1-1 Basic Components of a Control System
1-2 Examples of Control-System Applications
1-2-1 Intelligent Transportation Systems
1-2-2 Steering Control of an Automobile
1-2-3 Idle-Speed Control of an Automobile
1-2-4 Sun-Tracking Control of Solar Collectors
1-3 Open-Loop Control Systems (Nonfeedback Systems)
1-4 Closed-Loop Control Systems (Feedback Control Systems)
1-5 What Is Feedback, and What Are Its Effects?
1-5-1 Effect of Feedback on Overall Gain
1-5-2 Effect of Feedback on Stability
1-5-3 Effect of Feedback on External Disturbance or Noise
1-6 Types of Feedback Control Systems
1-7 Linear versus Nonlinear Control Systems
1-8 Time-Invariant versus Time-Varying Systems
1-9 Continuous-Data Control Systems
1-10 Discrete-Data Control Systems
1-11 Case Study: Intelligent Vehicle Obstacle Avoidance—LEGO MINDSTORMS
1-12 Summary
CHAPTER 2 Modeling of Dynamic Systems
2-1 Modeling of Simple Mechanical Systems
2-1-1 Translational Motion
2-1-2 Rotational Motion
2-1-3 Conversion between Translational and Rotational Motions
2-1-4 Gear Trains
2-1-5 Backlash and Dead Zone (Nonlinear Characteristics)
2-2 Introduction to Modeling of Simple Electrical Systems
2-2-1 Modeling of Passive Electrical Elements
2-2-2 Modeling of Electrical Networks
2-3 Introduction to Modeling of Thermal and Fluid Systems
2-3-1 Elementary Heat Transfer Properties
2-3-2 Elementary Fluid System Properties
2-4 Linearization of Nonlinear Systems
2-4-1 Linearization Using Taylor Series: Classical Representation
2-5 Analogies
2-6 Project: Introduction to LEGO MINDSTORMS NXT Motor—Mechanical Modeling
2-7 Summary
References
Problems
CHAPTER 3 Solution of Differential Equations of Dynamic Systems
3-1 Introduction to Differential Equations
3-1-1 Linear Ordinary Differential Equations
3-1-2 Nonlinear Differential Equations
3-2 Laplace Transform
3-2-1 Definition of the Laplace Transform
3-2-2 Important Theorems of the Laplace Transform
3-2-3 Transfer Function
3-2-4 Characteristic Equation
3-2-5 Analytic Function
3-2-6 Poles of a Function
3-2-7 Zeros of a Function
3-2-8 Complex Conjugate Poles and Zeros
3-2-9 Final-Value Theorem
3-3 Inverse Laplace Transform by Partial-Fraction Expansion
3-3-1 Partial Fraction Expansion
3-4 Application of the Laplace Transform to the Solution of Linear Ordinary Differential Equations
3-4-1 First-Order Prototype System
3-4-2 Second-Order Prototype System
3-4-3 Second-Order Prototype System—Final Observations
3-5 Impulse Response and Transfer Functions of Linear Systems
3-5-1 Impulse Response
3-5-2 Time Response Using the Impulse Response
3-5-3 Transfer Function (Single-Input, Single-Output Systems)
3-6 Systems of First-Order Differential Equations: State Equations
3-6-1 Definition of State Variables
3-6-2 The Output Equation
3-7 Solution of the Linear Homogeneous State Equation
3-7-1 Transfer Functions (Multivariable Systems)
3-7-2 Characteristic Equation from State Equations
3-7-3 State Equations from the Transfer Function
3-8 Case Studies with MATLAB
3-9 Linearization Revisited—the State-Space Approach
3-10 Summary
References
Problems
CHAPTER 4 Block Diagrams and Signal-Flow Graphs
4-1 Block Diagrams
4-1-1 Modeling of Typical Elements of Block Diagrams in Control Systems
4-1-2 Relation between Mathematical Equations and Block Diagrams
4-1-3 Block Diagram Reduction
4-1-4 Block Diagrams of Multi-Input Systems: Special Case—Systems with a Disturbance
4-1-5 Block Diagrams and Transfer Functions of Multivariable Systems
4-2 Signal-Flow Graphs
4-2-1 SFG Algebra
4-2-2 Definitions of SFG Terms
4-2-3 Gain Formula for SFG
4-2-4 Application of the Gain Formula between Output Nodes and Noninput Nodes
4-2-5 Simplified Gain Formula
4-3 State Diagram
4-3-1 From Differential Equations to State Diagrams
4-3-2 From State Diagrams to Transfer Functions
4-3-3 From State Diagrams to State and Output Equations
4-4 Case Studies
4-5 MATLAB Tools
4-6 Summary
References
Problems
CHAPTER 5 Stability of Linear Control Systems
5-1 Introduction to Stability
5-2 Methods of Determining Stability
5-3 Routh-Hurwitz Criterion
5-3-1 Routh’s Tabulation
5-3-2 Special Cases When Routh’s Tabulation Terminates Prematurely
5-4 MATLAB Tools and Case Studies
5-5 Summary
References
Problems
CHAPTER 6 Important Components of Feedback Control Systems
6-1 Modeling of Active Electrical Elements: Operational Amplifiers
6-1-1 The Ideal Op-Amp
6-1-2 Sums and Differences
6-1-3 First-Order Op-Amp Configurations
6-2 Sensors and Encoders in Control Systems
6-2-1 Potentiometer
6-2-2 Tachometers
6-2-3 Incremental Encoder
6-3 DC Motors in Control Systems
6-3-1 Basic Operational Principles of DC Motors
6-3-2 Basic Classifications of PM DC Motors
6-3-3 Surface-Wound DC Motors
6-3-4 Moving-Coil DC Motors
6-3-5 Brushless DC Motors
6-3-6 Mathematical Modeling of PM DC Motors
6-3-7 Relation between Ki and Kb
6-4 Speed and Position Control of a DC Motor
6-4-1 Speed Response and the Effects of Inductance and Disturbance: Open-Loop Response
6-4-2 Speed Control of DC Motors: Closed-Loop Response
6-4-3 Position Control
6-5 Case Studies: Practical Examples
6-6 The Control Lab: Introduction to LEGO MINDSTORMS NXT Motor—Modeling and Characterization
6-6-1 NXT Motor
6-6-2 Electrical Characteristics
6-6-3 Mechanical Characteristics
6-6-4 Speed Response and Model Verification
6-7 Summary
References
Problems
CHAPTER 7 Time-Domain Performance of Control Systems
7-1 Time Response of Continuous-Data Systems: Introduction
7-2 Typical Test Signals to Evaluate Time-Response Performance of Control Systems
7-3 The Unit-Step Response and Time-Domain Specifications
7-4 Time Response of a Prototype First-Order System
7-5 Transient Response of a Prototype Seco