E-Book, Englisch, 468 Seiten
Gollapudi Practical Machine Learning
1. Auflage 2016
ISBN: 978-1-78439-401-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Learn how to build Machine Learning applications to solve real-world data analysis challenges with this Machine Learning book – packed with practical tutorials
E-Book, Englisch, 468 Seiten
ISBN: 978-1-78439-401-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
No detailed description available for "Practical Machine Learning".
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Table of Contents - Introduction to Machine learning
- Context of Large datasets for Machine learning
- Hadoop as a Machine learning platform
- ML tools and frameworks (R, Mahout, Julia, Spark and Python)
- Decision Tree learning methods
- Instance based & Kernel learning methods (KNN and SVM)
- Association rule based learning methods (Apriori& FP-growth)
- Clustering based learning methods (K-means)
- Supervised & Unsupervised Learning: Linear Methods
- Unsupervised Learning: Clustering Methods
- Deep Learning Methods
- Reinforcement learning
- Summary of all the large scale machine learning frameworks and tools
- Looking Ahead: Lamda Architectures, Polyglot Persistence and Semantic Data Platforms for Machine Learning