E-Book, Englisch, 151 Seiten
Gollapudi Learn Computer Vision Using OpenCV
1. Auflage 2019
ISBN: 978-1-4842-4261-2
Verlag: Apress
Format: PDF
Kopierschutz: 1 - PDF Watermark
With Deep Learning CNNs and RNNs
E-Book, Englisch, 151 Seiten
ISBN: 978-1-4842-4261-2
Verlag: Apress
Format: PDF
Kopierschutz: 1 - PDF Watermark
- Understand what computer vision is, and its overall application in intelligent automation systems
- Discover the deep learning techniques required to build computer vision applications
- Build complex computer vision applications using the latest techniques in OpenCV, Python, and NumPy
- Create practical applications and implementations such as face detection and recognition, handwriting recognition, object detection, and tracking and motion analysis
Autoren/Hrsg.
Weitere Infos & Material
1;Table of Contents;5
2;About the Author;9
3;About the Technical Reviewer;10
4;Acknowledgments;11
5;Foreword;12
6;Introduction;13
7;Chapter 1: Artificial Intelligence and Computer Vision;17
7.1;Introduction to Artificial Intelligence;19
7.1.1;Natural Language Processing;23
7.1.2;Robotics;26
7.1.3;Machine Learning;27
7.1.4;Expert Systems;29
7.1.5;Speech and Voice Recognition;29
7.1.6;Intelligent Process Automation;30
7.2;Introduction to Computer Vision;30
7.2.1;Scope;31
7.2.2;Challenges of Computer Vision;35
7.2.3;Real-World Applications of Computer Vision;37
7.2.3.1;Automotive Industry;38
7.2.3.2;Healthcare and Biomedical Industry;38
7.2.3.3;Retail Industry;39
7.2.4;Images and Their Features;40
7.2.4.1;Color Spaces;41
7.2.5;Core Building Blocks (Input – Process – Output);42
7.2.5.1;Optical Character Recognition and Intelligent Character Recognition;44
7.2.5.2;Optical Mark Recognition;44
7.3;Conclusion;44
8;Chapter 2: OpenCV with Python;46
8.1;About OpenCV;47
8.2;Setting Up OpenCV with Python;47
8.2.1;Windows Installation;47
8.2.2;macOS Installation;51
8.3;Using Modules;53
8.4;Working with Images and Videos;55
8.4.1;Using NumPy;55
8.4.1.1;Reading and Loading Images with OpenCV and NumPy;56
8.4.1.2;Working with a Histogram Representation;59
8.4.2;Videos;61
8.4.2.1;Loading Videos from a Webcam;61
8.4.2.2;Loading Videos from a File;62
8.4.2.3;Reading the Video and Writing into a File;63
8.5;Conclusion;64
9;Chapter 3: Deep Learning for Computer Vision;66
9.1;Deep Learning: An Overview;67
9.2;Deep Learning Applications in Computer Vision;68
9.2.1;Classification;68
9.2.2;Detection and Localization;69
9.2.3;(Semantic) Segmentation;70
9.2.4;Similarity Learning;70
9.3;Image Captioning;70
9.4;Generative Models;71
9.5;Video Analysis;72
9.6;Neural Networks at Their Core;72
9.6.1;Artificial Neural Networks;73
9.6.2;Artificial Neurons or Perceptrons;73
9.6.3;Training Neural Networks;77
9.6.3.1;Backpropagation;77
9.6.3.2;Gradient Descent and Stochastic Gradient Descent;78
9.7;Convolutional Neural Networks;78
9.7.1;Convolution Layer;79
9.7.2;Pooling Layer;80
9.7.3;Fully Connected Layer;80
9.8;Recurrent Neural Networks;81
9.8.1;Backpropagation Through Time;83
9.9;Conclusion;84
10;Chapter 4: Image Manipulation and Segmentation;85
10.1;Image Manipulations;86
10.1.1;Accessing and Manipulating Pixels;87
10.1.2;Drawing Geometric Shapes or Writing Text on a Color Image;89
10.1.3;Filtering Images;93
10.1.4;Transforming Images;96
10.1.4.1;Translation;97
10.1.4.2;Rotation;99
10.1.4.3;Image Scaling;101
10.1.4.4;Edge Detection;102
10.2;Image Segmentation;104
10.2.1;Line Detection;106
10.2.2;Circle Detection;107
10.3;Conclusion;110
11;Chapter 5: Object Detection and Recognition;111
11.1;Basics of Object Detection;111
11.1.1;Object Detection vs. Object Recognition;112
11.1.2;Template Matching;113
11.1.3;Challenges with Template Matching;116
11.1.4;Understanding Image “Features”;116
11.1.4.1;Interesting and Uninteresting Points;117
11.1.4.2;Types of Image Features;118
11.2;Feature Matching;119
11.2.1;Image Corners As Features;119
11.2.2;Harris Corner Algorithm;120
11.2.3;Feature Tracking and Matching Flow;122
11.2.4;Scale Variant Feature Transform;123
11.2.5;Speeded-Up Robust Features;126
11.2.6;Features from Accelerated Segment Test;127
11.2.7;Binary Robust Independent Elementary Features;128
11.2.8;Oriented FAST and Rotated BRIEF;130
11.3;Conclusion;131
12;Chapter 6: Motion Analysis and Object Tracking;132
12.1;Introduction to Object Tracking;133
12.2;Challenges of Object Tracking;134
12.3;Object Detection Techniques for Tracking;134
12.3.1;Frame Differentiation;135
12.3.2;Background Subtraction;136
12.3.3;Optical Flow;138
12.3.3.1;Lucas–Kanade Differential Algorithm;139
12.3.3.2;Dense Optical Flow Algorithm;142
12.4;Object Classification;144
12.4.1;Shaped-Based Classification;145
12.4.2;Motion-Based Classification;145
12.4.3;Color-Based Classification;145
12.4.4;Texture-Based Classification;146
12.5;Object Tracking Methods;146
12.5.1;Point Tracking Method;147
12.5.2;Kernel-Based Tracking Methods;148
12.5.2.1;Simple Template Matching;148
12.5.2.2;Meanshift Method;149
12.5.2.3;Support Vector Machine;157
12.5.2.4;Layering-Based Tracking;157
12.5.3;Silhouette-Based Tracking;157
12.5.3.1;Contour Tracking;158
12.5.3.2;Shape Matching;158
12.6;Conclusion;158
13;Index;159




