Gohberg | Extension and Interpolation of Linear Operators and Matrix Functions | Buch | 978-3-7643-2530-5 | sack.de

Buch, Englisch, Band 47, 305 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 460 g

Reihe: Operator Theory: Advances and Applications

Gohberg

Extension and Interpolation of Linear Operators and Matrix Functions


1990
ISBN: 978-3-7643-2530-5
Verlag: Springer

Buch, Englisch, Band 47, 305 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 460 g

Reihe: Operator Theory: Advances and Applications

ISBN: 978-3-7643-2530-5
Verlag: Springer


The classicallossless inverse scattering (LIS) problem of network theory is to find all possible representations of a given Schur function s(z) (i. e., a function which is analytic and contractive in the open unit disc D) in terms of an appropriately restricted class of linear fractional transformations. These linear fractional transformations corre­ spond to lossless, causal, time-invariant two port networks and from this point of view, s(z) may be interpreted as the input transfer function of such a network with a suitable load. More precisely, the sought for representation is of the form s(Z) = -{ -A(Z)SL(Z) + B(z)}{ -C(Z)SL(Z) + D(z)} -1, (1. 1) where "the load" SL(Z) is again a Schur function and _ [A(Z) B(Z)] 0( ) (1. 2) Z - C(z) D(z) is a 2 x 2 J inner function with respect to the signature matrix This means that 0 is meromorphic in D and 0(z)* J0(z):5 J (1. 3) for every point zED at which 0 is analytic with equality at almost every point on the boundary Izi = 1. A more general formulation starts with an admissible matrix valued function X(z) = [a(z) b(z)] which is one with entries a(z) and b(z) which are analytic and bounded in D and in addition are subject to the constraint that, for every n, the n x n matrix with ij entry equal to X(Zi)J X(Zj )* i,j=l,.

Gohberg Extension and Interpolation of Linear Operators and Matrix Functions jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Realization and factorization for rational matrix functions with symmetries.- Lossless inverse scattering and reproducing kernels for upper triangular operators.- Zero-pole structure of nonregular rational matrix functions.- Structured interpolation theory.- Extension theorems for contraction operators on Krein spaces.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.