Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
Goebel / Yu / Faltings Trustworthy Federated Learning
1. Auflage 2023
ISBN: 978-3-031-28996-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, Vienna, Austria, July 23, 2022, Revised Selected Papers
E-Book, Englisch, 159 Seiten
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-031-28996-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book constitutes the refereed proceedings of the First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, held in Vienna, Austria, during July 23-25, 2022.
The 11 full papers presented in this book were carefully reviewed and selected from 12 submissions. They are organized in three topical sections: answer set programming; adaptive expert models for personalization in federated learning and privacy-preserving federated cross-domain social recommendation.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Adaptive Expert Models for Personalization in Federated Learning.- Federated Learning with GAN-based Data Synthesis for Non-iid Clients.- Practical and Secure Federated Recommendation with Personalized Mask.- A General Theory for Client Sampling in Federated Learning.- Decentralized adaptive clustering of deep nets is beneficial for client collaboration.- Sketch to Skip and Select: Communication Efficient Federated Learning using Locality Sensitive Hashing.- Fast Server Learning Rate Tuning for Coded Federated Dropout.- FedAUXfdp: Differentially Private One-Shot Federated Distillation.- Secure forward aggregation for vertical federated neural network.- Two-phased Federated Learning with Clustering and Personalization for Natural Gas Load Forecasting.- Privacy-Preserving Federated Cross-Domain Social Recommendation.