Göbel / Trlifaj | Approximations and Endomorphism Algebras of Modules | E-Book | sack.de
E-Book

E-Book, Englisch, Band 41, 664 Seiten

Reihe: De Gruyter Expositions in Mathematics

Göbel / Trlifaj Approximations and Endomorphism Algebras of Modules


1. Auflage 2008
ISBN: 978-3-11-019972-7
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 41, 664 Seiten

Reihe: De Gruyter Expositions in Mathematics

ISBN: 978-3-11-019972-7
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark



The category of all modules over a general associative ring is too complex to admit any reasonable classification. Thus, unless the ring is of finite representation type, one must limit attempts at classification to some restricted subcategories of modules.

The wild character of the category of all modules, or of one of its subcategories C is often indicated by the presence of a realization theorem, that is, by the fact that any reasonable algebra is isomorphic to the endomorphism algebra of a module from C. This results in the existence of pathological direct sum decompositions and these are generally viewed as obstacles to the classification. Realization theorems have thus become important indicators of the non-classification theory of modules.

In order to overcome this problem, approximation theory of modules has been developed over the past few decades. The idea here is to select suitable subcategories C whose modules can be classified, and then to approximate arbitrary modules by ones from C. These approximations are neither unique nor functorial in general, but there is always a rich supply available appropriate to the requirements of various particular applications. Thus approximation theory has developed into an important part of the classification theory of modules.

In this monograph the two methods are brought together. First the approximation theory of modules is developed and some of its recent applications, notably to infinite dimensional tilting theory, are presented. Then some prediction principles from set theory are introduced and these become the principal tools in the establishment of appropriate realization theorems.

The monograph starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory.

Göbel / Trlifaj Approximations and Endomorphism Algebras of Modules jetzt bestellen!

Zielgruppe


Research mathematicians, graduate students; academic libraries

Weitere Infos & Material


Contents
Chapter 1. Some useful classes of modules
Chapter 2. Approximations of modules
Chapter 3. Complete cotorsion pairs
Chapter 4. Deconstruction of cotorsion pairs
Chapter 5. Tilting approximations
Chapter 6. 1–tilting modules and their applications
Chapter 7. Tilting approximations and the finitistic dimension conjectures
Chapter 8. Cotilting modules
Chapter 9. The Black Box and its relatives
Chapter 10. Independence results for cotorsion pairs
Chapter 11. The lattice of cotorsion pairs
Chapter 12. Realizing algebras – by algebraically independent elements and by prediction principles
Chapter 13. E(R)–algebras
Chapter 14. Modules with distinguished submodules
Chapter 15. Some useful classes of algebras
Backmatter


Rüdiger Göbel, University of Duisburg-Essen, Germany; Jan Trlifaj, Charles University, Prague, Czech Republic.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.