Buch, Englisch, Band 10, 524 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 814 g
Point Sources and Bounded Beams
Buch, Englisch, Band 10, 524 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 814 g
Reihe: Springer Series on Wave Phenomena
ISBN: 978-3-642-08489-8
Verlag: Springer
This second edition reflects the notable recent progress in the field of acoustic wave propagation in inhomogeneous media.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Physik, Chemie für Ingenieure
- Naturwissenschaften Physik Mechanik Akustik, Schwingungsanalyse
- Naturwissenschaften Physik Thermodynamik Oberflächen- und Grenzflächenphysik, Dünne Schichten
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Kontinuumsmechanik
- Naturwissenschaften Physik Mechanik Kontinuumsmechanik, Strömungslehre
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Strömungslehre
Weitere Infos & Material
1. Reflection and Refraction of Spherical Waves.- 2. Reflection of Bounded Wave Beams.- 3. The Lateral Wave.- 4. Exact Theory of the Sound Field in Inhomogeneous Moving Media.- 5. High Frequency Sound Fields.- 6. The Field at and near a Caustic.- 7. Wave Propagation in a Range Dependent Waveguide.- 8. Energy Conservation and Reciprocity for Waves in Three-Dimensionally Inhomogeneous Moving Media.- Appendix A. The Reference Integrals Method.- A.1 The Method of Steepest Descent.- A.1.1 Integrals over an Infinite Contour.- A.1.2 Integrals over Semi-infinite Contours.- A.1.3 Integrals with Finite Limits.- A.1.4 The Contribution of Branch Points.- A.1.5 Integrals with Saddle Points of Higher Orders.- A.1.6 Several Saddle Points.- A.1.7 Concluding Remarks.- A.2 Integrals over a Real Variable.- A.2.1 Asymptotics of Laplace Integrals.- A.2.2 Stationary Phase Method. Asymptotics of Fourier Integrals.- A.2.3 Asymptotics of Multiple Fourier Integrals.- A.2.4 Asymptotics of Multiple Laplace Integrals.- A.2.5 Contributions of Critical Points on a Boundary.- A.3 Uniform Asymptotics of Integrals.- A.3.1 The Concept of Uniform Asymptotics.- A.3.2 A Pole and a Simple Stationary Point.- A.3.3 A Single Simple Stationary Point and a Branch Point.- A.3.4 Semi-infinite Contours.- A.3.5 Other Cases.- A.3.6 Concluding Remarks.- Appendix B. Differential Equations of Coupled-Mode Propagation in Fluids with Sloping Boundaries and Interfaces.- B.1 Derivation of the Differential Equations for Mode Coupling.- B.2 Mode-Coupling Coefficients in Terms of Environmental Gradients.- B.3 Energy Conservation and Symmetry of the Mode Coupling Coefficients.- B.4 Convergence of Normal Mode Expansions and its Implications on the Mode-Coupling Equations: Two Examples.- Appendix C. Reciprocity and Energy Conservation Within the Parabolic Approximation.- C.1 Definitions and Basic Relationships.- C.1.1 Range-Independent One-Way Wave Equations.- C.1.2 Equivalence of Reciprocity and Energy Conservation.- C.2 Energy Conserving and Reciprocal One-Way Wave Equation.- C.3 Generalized Claerbout PE (GCPE).- C.3.1 GCPE Derivation.- C.3.2 Local Reciprocity and Energy Balance Relations.- C.3.3 Media with Interfaces.- C.4 Comparison of Different One-Way Approximations.- C.5 Conclusion.- References.