Gnanagurunathan / Sangeetha / Kiran | Optical And Microwave Technologies | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 468, 314 Seiten

Reihe: Lecture Notes in Electrical Engineering

Gnanagurunathan / Sangeetha / Kiran Optical And Microwave Technologies

Select Proceedings of ICNETS2, Volume IV
1. Auflage 2018
ISBN: 978-981-10-7293-2
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

Select Proceedings of ICNETS2, Volume IV

E-Book, Englisch, Band 468, 314 Seiten

Reihe: Lecture Notes in Electrical Engineering

ISBN: 978-981-10-7293-2
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book gathers a collection of papers by international experts presented at the International Conference on NextGen Electronic Technologies (ICNETS2-2016). ICNETS2 encompasses six symposia covering all aspects of the electronics and communications domains, including relevant nano/micro materials and devices. Highlighting the latest research on Optical And Microwave Technologies, the book will benefit all researchers, professionals, and students working in the core areas of electronics and their applications, especially in signal processing, embedded systems, and networking.

Sangeetha R.G.'s education includes a B.E. in Electronics and Communication Engineering and M.E. in Computer and Communication Engineering. She completed her Ph.D. (2012) in Optical Networks at the Indian Institute of Technology Delhi. She has a national and a US patent to her credit. Her research publications are in reputed journals and conferences. She has 11 years of teaching experience. Currently, she is working as an Associate Professor in VIT University, Chennai campus and guiding M.Tech and Ph.D scholars. She is a member of IEEE and OSA. Her main research interests are in the area of Fiber Optic Communications, Optical Networks, and Free Space Communication. Currently, she is pursuing a Department of Science and Technology (DST)-sponsored project, titled 'Test Bed for Hardware Implementation of All Optical Bi-Directional Switching Node' under the Fast-Track Young Scientist Scheme.  Dr. Usha Kiran K. completed her Ph.D. on Microwave Antennas at Gulbarga University, Karnataka in 2007. She then joined the Microwave Lab, ECE, Indian Institute of Science (IISc), Bangalore as Project Associate and developed several RF MEMS SPDT and SPST switches from 2007 to 2009. She served as a Project Scientist at the Indian Institute of Technology (IIT), Delhi, where she worked on an RF MEMS Phase shifter from 2010 to 2012. Since 2012, she has been working at Vellore Institute of Technology (VIT), Chennai. She has published more than 80 papers in international and national journals, and for conferences on Microwave Antennas and RF MEMS. Presently, she is working on a DST-funded project on 'MEM phase shifter based steerable antenna array'.

Gnanagurunathan / Sangeetha / Kiran Optical And Microwave Technologies jetzt bestellen!

Weitere Infos & Material


1;Contents;6
2;About the Editors;9
3;1 Enhanced Hierarchical Cluster Based Routing Protocol with Optical Sphere in FSO MANET;11
3.1;Abstract;11
3.2;1 Introduction (Free Space Optical Wireless Networks);12
3.3;2 Literature Review;13
3.4;3 Problem Identification and Solution;13
3.4.1;3.1 Data Propagation Model;14
3.4.2;3.2 Phases of proposed Hierarchical Routing protocol with Multielements;14
3.5;4 Simulation Results;15
3.5.1;4.1 Simulation Results;15
3.5.2;4.2 Performance Metrics;16
3.6;5 Results;16
3.7;6 Conclusion;17
3.8;References;18
4;2 Performance Improvement of Fractal Antenna with Electromagnetic Band Gap (EBG) and Defected Ground Structure for Wireless Communication;19
4.1;Abstract;19
4.2;1 Introduction;19
4.3;2 Methodology;20
4.3.1;2.1 Antenna Design;20
4.4;3 Results and Discussions;23
4.4.1;3.1 Analysis with Respect to Number of Iterations and EBG Structure in Ground Plane;23
4.4.2;3.2 Proposed Antenna;25
4.5;4 Conclusion;28
4.6;Reference;29
5;3 Conventional DMTL Phase Shifter is Designed Without Meta-material and with Meta-material;30
5.1;Abstract;30
5.2;1 Introduction;30
5.3;2 Literature and Proposed Work;31
5.4;3 Design of Antenna;32
5.5;4 Conventional DMTL Phase Shifter Is Designed Without Meta-material and with Meta-material;34
5.6;5 Result;36
5.7;6 Conclusion;41
5.8;References;41
6;4 A Modified L-Slot Microstrip Antenna with Chamfered Patch Edges for UWB Applications;42
6.1;Abstract;42
6.2;1 Introduction;42
6.3;2 Antenna Design and Simulation;43
6.3.1;2.1 Design Equations;44
6.3.2;2.2 Chamfering and Optimization of Parameters;46
6.4;3 Conclusion;50
6.5;Acknowledgements;51
6.6;References;51
7;5 Performance Analysis of CSRZ-DQPSK Modulator for RoF-PON-Based Wireless Access;52
7.1;Abstract;52
7.2;1 Introduction;52
7.3;2 System Model;53
7.4;3 Results and Discussions;55
7.5;4 Conclusion;60
7.6;References;60
8;6 Effects of Cross-phase Modulation and Four-Wave Mixing in DWDM Optical Systems Using RZ and NRZ Signal;61
8.1;Abstract;61
8.2;1 Introduction;61
8.3;2 Four-Wave Mixing;62
8.4;3 Cross-phase Modulation;63
8.5;4 Transmitter Section;64
8.5.1;4.1 NRZ Optical Transmitter;64
8.5.2;4.2 RZ Optical Transmitter;64
8.6;5 Simulation Setup;65
8.7;6 Results and Discussions;67
8.7.1;6.1 Effects Due to Cross-phase Modulation;67
8.7.2;6.2 Effects of Four-Wave Mixing;68
8.8;7 Conclusion;70
8.9;References;71
9;7 Implantable Antenna for Blood Glucose Monitoring;72
9.1;Abstract;72
9.2;1 Introduction;72
9.3;2 Antenna Design;73
9.4;3 Results;74
9.5;4 Conclusion;77
9.6;References;77
10;8 Reliability Analysis of Data Center Network;78
10.1;Abstract;78
10.2;1 Introduction;78
10.3;2 Reliability Block Diagram (RBD) Analytical Method;79
10.3.1;2.1 Series RBD;80
10.3.2;2.2 Parallel RBD;80
10.3.3;2.3 Series–Parallel RBD;81
10.4;3 Network Reliability Analysis;82
10.4.1;3.1 Network Reliability Analysis for Benes Network;82
10.4.2;3.2 Network Reliability Analysis for Torus Network;83
10.5;4 Comparison of Network Reliability Analysis;84
10.6;5 Conclusion;86
10.7;References;87
11;9 Study of Microstrip Antenna Array with EBG Structure;88
11.1;Abstract;88
11.2;1 Introduction;88
11.3;2 Antenna Array Design Without EBG;89
11.4;3 Antenna Array Design with EBG Slots;90
11.5;4 Photographs of Fabricated Antennas;92
11.6;5 Measured Results;93
11.7;6 Summary of Measured Results;96
11.8;7 Conclusion;97
11.9;References;97
12;10 Gain Enhancement of Compact Multiband Antenna with Metamaterial Superstrate;98
12.1;Abstract;98
12.2;1 Introduction;98
12.3;2 Antenna Design;99
12.4;3 Result and Discussion;100
12.5;4 Conclusion;104
12.6;References;104
13;11 Cooperative Communication for Resource Sharing in Cognitive Radio Networks;106
13.1;Abstract;106
13.2;1 Introduction;106
13.3;2 Literature Survey;107
13.4;3 System Model;108
13.5;4 Results;109
13.6;References;111
14;12 Interdomain Traffic Engineering with BGP and MPLS VPN;112
14.1;Abstract;112
14.2;1 Introduction;112
14.3;2 Exterior Gateway Protocol (EGP);113
14.3.1;2.1 Border Gateway Protocol (BGP);113
14.4;3 Traffic Engineering;114
14.5;4 MPLS VPN;114
14.6;5 Topology for Analysis;116
14.7;6 Result;116
14.8;7 Conclusion;118
14.9;References;118
15;13 Analysis and Critical Parameter Extraction of an LED for Brain Implants;120
15.1;Abstract;120
15.2;1 Introduction;120
15.3;2 LED for Direct Brian Implant;122
15.3.1;2.1 Selection of an LED;122
15.3.2;2.2 Thermal Effects of an LED System;122
15.3.3;2.3 Heat Generated by Light;123
15.3.4;2.4 Heat Generated by Device;125
15.4;3 Design Parameter Analysis;125
15.5;Acknowledgements;130
15.6;References;130
16;14 Review of Thermal Management of an LED for Brain Implants;131
16.1;Abstract;131
16.2;1 Introduction;131
16.3;2 Heat Generated by an LED;134
16.3.1;2.1 Thermal Properties of an LED;134
16.3.2;2.2 Junction Temperature Measurement;137
16.3.3;2.3 Thermal Analysis;139
16.4;3 Bioheat Transfer;140
16.5;4 Summary;141
16.6;5 Conclusion;143
16.7;Acknowledgements;143
16.8;References;143
17;15 Band Gap Analysis in Defectless Photonic Crystals;144
17.1;Abstract;144
17.2;1 Introduction;144
17.3;2 Mathematical Formulation for Band Gap;145
17.4;3 Photonic Crystal Design;146
17.5;4 Results;147
17.5.1;4.1 Influence of Refractive Index;147
17.5.2;4.2 Influence of Ratio of Radius to Lattice Constant;148
17.6;5 Conclusion;149
17.7;Acknowledgements;149
17.8;References;149
18;16 Multiband High-Gain Antenna with CPW Feed for Wi-Fi, WI-MAX and X Band Application;150
18.1;Abstract;150
18.2;1 Introduction;151
18.3;2 Antenna Design and Simulation;152
18.4;3 Results and Discussion;154
18.5;4 Conclusion;157
18.6;References;157
19;17 Design and Parameter Extraction of Split Ring Resonator for Surface Crack Detection in Different Materials;158
19.1;Abstract;158
19.2;1 Introduction;158
19.3;2 Theoretical Analysis;160
19.4;3 Unit Cell Design;161
19.5;4 Conclusion;165
19.6;References;165
20;18 Optical Channel Analysis of Turbo Coded MIMO-OFDM System for Visible Light Communication;166
20.1;Abstract;166
20.2;1 Introduction;166
20.3;2 System Model for Optical Wireless Communication;167
20.3.1;2.1 Modulation Techniques for VLC;167
20.3.1.1;2.1.1 Differential Pulse Interval Modulation (DPIM);167
20.3.1.2;2.1.2 Double Header Pulse Interval Modulation (DH-PIM);168
20.3.2;2.2 Advantages of Differential Modulation Techniques;168
20.3.2.1;2.2.1 Power Efficiency;168
20.3.2.2;2.2.2 Bandwidth Efficiency;169
20.3.2.3;2.2.3 Transmission Reliability;169
20.4;3 Proposed System Model;170
20.4.1;3.1 Turbo Coded OFDM Systems;171
20.4.1.1;3.1.1 Turbo Encoder;171
20.4.1.2;3.1.2 Turbo Decoder;172
20.4.2;3.2 Soft Output Viterbi Algorithm (SOVA);173
20.4.3;3.3 Rayleigh Fading Channel;174
20.5;4 Performance Results;175
20.6;5 Conclusions;178
20.7;References;179
21;19 Frequency Tuning Method for Small Profile Metamaterial Based on Tri-Ring Resonator;180
21.1;Abstract;180
21.2;1 Introduction;180
21.3;2 Design and Simulation;181
21.3.1;2.1 Single Ring Resonator;181
21.3.2;2.2 Tri-Ring Resonator;183
21.3.3;2.3 Metamaterial Properties of Tri-Ring Resonator;184
21.4;3 Frequency Tuning Methods;185
21.4.1;3.1 By Varying Ring Diameter;185
21.4.2;3.2 By Rotating the Inner Ring;186
21.5;4 Results and Discussion;188
21.6;5 Conclusion;188
21.7;References;188
22;20 Redesigning Mach-Zehnder Modulator with Ring Resonators;190
22.1;Abstract;190
22.2;1 Introduction;190
22.3;2 Ring Resonators in MZM;191
22.4;3 Results;192
22.5;4 Conclusion;195
22.6;References;195
23;21 Study on Gain Enhancement of the Antenna Using Planar Small Metasurface Lens;197
23.1;Abstract;197
23.2;1 Introduction;197
23.3;2 Proposed Work;198
23.4;3 Design of the Unit Cell;198
23.5;4 Analysis of the Unit Cell;198
23.6;5 Result;202
23.7;6 Conclusion and Future Work;205
23.8;References;205
24;22 Design of an Internal Multi-resonant PIFA Antenna for Mobile Telecommunication Networks;206
24.1;Abstract;206
24.2;1 Introduction;206
24.3;2 Configuration of Proposed Antenna;208
24.4;3 Validation of Simulated Results;209
24.4.1;3.1 Return Loss;209
24.4.2;3.2 Voltage Standing Wave Ratio;210
24.4.3;3.3 Radiation Pattern;210
24.5;Acknowledgements;212
24.6;References;212
25;23 Design of Substrate Integrated Waveguide Back to Back ?-Shaped Slot Antenna for 60 GHz Applications;213
25.1;Abstract;213
25.2;1 Introduction;213
25.3;2 Microstrip Design;215
25.3.1;2.1 Microstrip;215
25.3.2;2.2 Microstrip Tapering to Rectangular Waveguide;215
25.4;3 Substrate Integrated Waveguide;216
25.5;4 Results and Discussion;216
25.6;5 Conclusion;221
25.7;References;222
26;24 Performance Improvement of Gain in Distributed Raman Amplifier Using Forward and Backward Pumps;223
26.1;Abstract;223
26.2;1 Introduction;223
26.3;2 Raman Fiber Amplifier;224
26.4;3 Forward and Backward Pumping for Flat Gain and Better Noise;225
26.5;4 Results;225
26.6;5 Conclusion;228
26.7;References;228
27;25 A Comparative Study on Asymmetric, Triangular, and Rectangular Core Large-Mode-Area PCF Designs;230
27.1;Abstract;230
27.2;1 Introduction;230
27.3;2 Structural Parameter, Simulation Method, Results, and Discussion;231
27.3.1;2.1 Structural Parameter;231
27.3.2;2.2 Simulation Method;233
27.3.3;2.3 Result and Discussion;234
27.4;3 Conclusion;236
27.5;References;236
28;26 Miniaturized High-Gain UWB Monopole Antenna with Dual Band Rejection Using CSRR;238
28.1;Abstract;238
28.2;1 Introduction;238
28.3;2 Antenna Structure Without Dual Band-Notches;239
28.3.1;2.1 Simple Rectangular Patch Antenna;239
28.3.2;2.2 Antenna with Step-Shaped Patch;240
28.3.3;2.3 Antenna with Tree-Shaped Patch;241
28.3.3.1;2.3.1 Comparison of Simulated and Measured (S11) Characteristics of UWB Antenna;241
28.3.3.2;2.3.2 Analysis Between Simulated and Measured VSWR of UWB Antenna;242
28.4;3 Antenna Structures with Band Notches;242
28.4.1;3.1 Antenna with Dual Band-Notches;243
28.5;4 Results;246
28.6;5 Conclusion;246
28.7;References;246
29;27 SOA Parameters Optimization for High Data Rate Operation;248
29.1;Abstract;248
29.2;1 Introduction;248
29.3;2 Theory of SOA;249
29.4;3 Gain Saturation;250
29.5;4 Optimization of Parameters;250
29.6;5 Conclusion;253
29.7;References;253
30;28 All-Optical 3R Regenerator of Design and Simulation;255
30.1;Abstract;255
30.2;1 Introduction;255
30.3;2 Link Establishment;256
30.4;3 1R Regenerator;257
30.4.1;3.1 Line Losses;257
30.5;4 2R Regenerator;258
30.5.1;4.1 Dispersion;258
30.5.2;4.2 Dispersion Compensation;258
30.5.3;4.3 Clock Recovery;259
30.6;5 Results and Inferences;263
30.7;6 Conclusion;267
30.8;References;267
31;29 Analysis of Dispersion Compensation Methods in WDM Systems;268
31.1;Abstract;268
31.2;1 Introduction;269
31.3;2 Simulation Setup;270
31.4;3 Result Analysis;272
31.5;4 Conclusion;276
31.6;References;276
32;30 Wideband Antenna for Medical Application;278
32.1;Abstract;278
32.2;1 Introduction;278
32.3;2 Proposed Methodologies;279
32.4;3 Design Methodology;280
32.4.1;3.1 Meander Slot Antenna;280
32.4.2;3.2 Spiral-Slot Antenna;280
32.4.3;3.3 Shorting Pin;280
32.5;4 Proposed Antenna Design;281
32.5.1;4.1 Use of High Dielectric Substrate and Superstrate;281
32.5.2;4.2 Change of Feeding Point;281
32.5.3;4.3 Use of Shorting Pin;281
32.5.4;4.4 Separated Spiral with Change of Feed Point;281
32.5.5;4.5 Feed Location;281
32.6;5 Conclusion;286
32.7;References;287
33;31 Mitigation of Cross-Phase Modulation in Multiband Radio Over Fiber Systems;288
33.1;Abstract;288
33.2;1 Introduction;288
33.3;2 Cross-Phase Modulation;289
33.4;3 Methodology;290
33.5;4 Performance Evaluation;291
33.5.1;4.1 NRZ Pulse Train;291
33.5.2;4.2 PSK Pulse Train;292
33.5.3;4.3 OQPSK Pulse Train;294
33.6;5 Predistortion;296
33.7;6 Results and Analysis;296
33.7.1;6.1 NRZ Pulse Train;296
33.7.2;6.2 PSK Pulse Train;297
33.7.3;6.3 OQPSK Pulse Train;298
33.8;7 Conclusion;299
33.9;References;300
34;32 The Design of High Gain Substrate Integrated Waveguide Antennas with FR4 and RT Duroid;301
34.1;Abstract;301
34.2;1 Introduction;301
34.3;2 SIW Antenna Design;302
34.4;3 Design of Microstrip Transition;303
34.5;4 Design of SIW Slot Antenna for Circular Polarization;304
34.6;5 Conclusion;313
34.7;Acknowledgements;314
34.8;References;314



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.