Girbau / Bruna | Stability by Linearization of Einstein's Field Equation | Buch | 978-3-0346-0303-4 | sack.de

Buch, Englisch, Band 58, 208 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 512 g

Reihe: Progress in Mathematical Physics

Girbau / Bruna

Stability by Linearization of Einstein's Field Equation


1. Auflage. 2010
ISBN: 978-3-0346-0303-4
Verlag: Birkhäuser Basel

Buch, Englisch, Band 58, 208 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 512 g

Reihe: Progress in Mathematical Physics

ISBN: 978-3-0346-0303-4
Verlag: Birkhäuser Basel


V ? V ?K?, 3 2 2 R ? /?x K i i g V T G g ?T, ? G g g 4 ? R ? ? G ? T g g ? h h ? 2 2 2 2 ? ? ? ? ? ? ? h ?S, ?? ?? 2 2 2 2 2 c ?t ?x ?x ?x 1 2 3 S T S T? T?. ? ˜ T S 2 2 2 2 ? ? ? ? ? ? ? h. ?? 2 2 2 2 2 c ?t ?x ?x ?x 1 2 3 g h h ?? g T T g vacuum M n R n R Acknowledgements n R Chapter I Pseudo-Riemannian Manifolds I.1 Connections M C n X M C M F M C X M F M connection covariant derivative M ? X M ×X M ?? X M X,Y ?? Y X ? Y ? Y ? Y X +X X X 1 2 1 2 ? Y Y ? Y ? Y X 1 2 X 1 X 2 ? Y f? Y f?F M fX X ? fY X f Y f? Y f?F M X X ? torsion ? Y?? X X,Y X,Y?X M. X Y localization principle Theorem I.1. Let X, Y, X, Y be C vector ?elds on M.Let U be an open set

Girbau / Bruna Stability by Linearization of Einstein's Field Equation jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Preface // I Pseudo-Riemannian Manifolds: I.1 Connections / I.2 Firsts results on pseudo-Riemannian manifolds / I.3 Laplacians / I.4 Sobolev spaces of tensors on Riemannian manifolds / I.5 Lorentzian manifolds // II Introduction to Relativity: II.1 Classical fluid mechanics / II.2 Kinematics of the special relativity / II.3 Dynamics of special relativity / II.4 General relativity / II.5 Cosmological models / II. 6 Appendix: a theorem in affine geometry // III. Approximation of Einstein's Equation by the Wave Equation: III.1 Perturbations of Ricci tensor / III.2 Einstein's equation for small perturbations of the Minkowski metric / III.3 Action on metrics of diffeomorphisms close to identity / III.4 Continuing the calculation of Section 2 / III.5 Comparison with the classical gravitation // IV. Cauchy Problem for Einstein's Equation with Matter: IV.1 1. Differential operators in an open set of Rn+1 / IV.2 Differential operators in vector bundles / IV.3 Harmonic maps / IV.4 Admissible classes of stress-energy tensors / IV.5 Differential operator associated to Einstein's equation / IV.6 Constraint equations / IV.7 Hyperbolic reduction / IV.8 Fundamental theorem / IV.9 An example: the stress-energy tensor of holonomic media / IV.10 The Cauchy problem in the vacuum // V. Stability by Linearization of Einstein's Equation, General Concepts: V.1 Classical concept of stability by linearization of Einstein's equation in the vacuum / V.2 A new concept of stability by linearization of Einstein's equation in the presence of matter / V.3 How to apply the definition of stability by linearization of Einstein's equation in the presence of matter / V.4 Change of notation / V.5 Technical details concerning the map f / V.6 Tangent linear map of f // VI. General Results on Stability by Linearization when the Submanifold M of V is Compact: IV.1 1. Adjoint of D(g,k) f / VI.2 Results by A. Fischer and J. E. Marsden / VI.3 A result by V. Moncrief / VI.4 Appendix: general results on elliptic operators in compact manifolds // VII. Stability by Linearization of Einstein's Equation at Minkowski's Initial Metric: VII.1 A further expression of D(g,k) f / VII.2 The relation between Euclidean Laplacian and stability by linearization at the initial Minkowski's metric / VII.3 Some proofs on topological isomorphisms in Rn / VII.4 Stability of the Minkowski metric: Y. Choquet-Bruhat and S. Deser's result / VII.5 The Euclidean asymptotic case: generalization of a result by Y. Choquet-Bruhat, A. Fischer and J. E. Marsden // VIII. Stability by Linearization of Einstein's Equation in Robertson-Walker Cosmological Models: VIII.1 Euclidean model / VIII.2 Hyperbolic model / VIII.3 Sobolev spaces and hyperbolic Laplacian / VIII.4 Spherical model / VIII.5 Universes that are not simply connected // References



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.