Buch, Englisch, 164 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 283 g
Fundamentals, Modeling, and Case Studies
Buch, Englisch, 164 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 283 g
Reihe: SpringerBriefs in Mathematics
ISBN: 978-3-031-42332-1
Verlag: Springer International Publishing
This work starts with a brief review of computability theory, aimed to convince the reader – more specifically, researchers of more traditional areas of mathematical modeling – about the power of neural computing in fluid animations. In these initial chapters, fluid modeling through Navier-Stokes equations and numerical methods are also discussed.
The following chapters explore the advantages of the neural networks approach and show the building blocks of neural networks for fluid simulation. They cover aspects related to training data, data augmentation, and testing.
The volume completes with two case studies, one involving Lagrangian simulation of fluids using convolutional neural networks and the other using Generative Adversarial Networks (GANs) approaches.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde
- Mathematik | Informatik Mathematik Mathematische Analysis
- Technische Wissenschaften Technik Allgemein Modellierung & Simulation
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computersimulation & Modelle, 3-D Graphik
Weitere Infos & Material
Introduction.- Fluids and Deep Learning: A Brief Review.- Fluid Modeling through Navier-Stokes Equations and Numerical Methods.- Why Use Neural Networks for Fluid Animation.- Modeling Fluids through Neural Networks.- Fluid Rendering.- Traditional Techniques.- Advanced Techniques.- Deep Learning in Rendering.- Case Studies.- Perspectives.- Discussion and Final Remarks.- References.