Gillespie | Abelian Model Category Theory | Buch | 978-1-009-44946-5 | sack.de

Buch, Englisch, Band 215, 436 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 781 g

Reihe: Cambridge Studies in Advanced Mathematics

Gillespie

Abelian Model Category Theory


Erscheinungsjahr 2024
ISBN: 978-1-009-44946-5
Verlag: Cambridge University Press

Buch, Englisch, Band 215, 436 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 781 g

Reihe: Cambridge Studies in Advanced Mathematics

ISBN: 978-1-009-44946-5
Verlag: Cambridge University Press


Offering a unique resource for advanced graduate students and researchers, this book treats the fundamentals of Quillen model structures on abelian and exact categories. Building the subject from the ground up using cotorsion pairs, it develops the special properties enjoyed by the homotopy category of such abelian model structures. A central result is that the homotopy category of any abelian model structure is triangulated and characterized by a suitable universal property – it is the triangulated localization with respect to the class of trivial objects. The book also treats derived functors and monoidal model categories from this perspective, showing how to construct tensor triangulated categories from cotorsion pairs. For researchers and graduate students in algebra, topology, representation theory, and category theory, this book offers clear explanations of difficult model category methods that are increasingly being used in contemporary research.

Gillespie Abelian Model Category Theory jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Introduction and main examples: 1. Additive and exact categories; 2. Cotorsion pairs; 3. Stable categories from cotorsion pairs; 4. Hovey triples and abelian model structures; 5. The homotopy category of an abelian model structure; 6. The triangulated homotopy category; 7. Derived functors and abelian monoidal model structures; 8. Hereditary model structures; 9. Constructing complete cotorsion pairs; 10. Abelian model structures on chain complexes; 11. Mixed model structures and examples; 12. Cofibrant generation and well-generated homotopy categories; A. Hovey's correspondence for general exact categories; B. Right and left homotopy relations; C. Bibliographical notes; References; Index.


Gillespie, James
James Gillespie is Professor of Mathematics at Ramapo College of New Jersey. His research interests are homological algebra and abstract homotopy theory and he is the author of thirty-five well-cited articles in the area, particularly on topics such as rings and modules, chain complexes, and sheaves.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.