E-Book, Englisch, 708 Seiten, Web PDF
Gill Plasma Physics and Nuclear Fusion Research
1. Auflage 2013
ISBN: 978-1-4832-1793-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 708 Seiten, Web PDF
ISBN: 978-1-4832-1793-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book further tackles the pinch and tokamak confinement devices; the stellarator confinement devices; the mirror devices; and the next generation tokamaks. The text also encompasses the fusion reactor studies; heating; and diagnostics. Physicists and people involved in the study of plasma physics and nuclear fusion will find the book invaluable.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Plasma Physics and Nuclear Fusion Research;4
3;Copyright Page;5
4;Table of Contents;12
5;Contributors;6
6;Preface;8
7;Acknowledgements;10
8;Section I: INTRODUCTION;22
8.1;Chapter 1. Overview and Survey of Plasma Physics;24
8.1.1;1.1 HISTORY OF PLASMA PHYSICS;24
8.1.2;1.2 PLASMA DESCRIPTION;27
8.1.3;1.3 PLASMA PROPERTIES;30
8.1.4;1.4 PARTICULAR PLASMAS;38
8.1.5;1.5 CONCLUSIONS;52
8.1.6;REFERENCES;53
8.2;Chapter 2. Nuclear Fusion Research;54
8.2.1;2.1 MOTIVATION FOR FUSION RESEARCH;54
8.2.2;2.2 NUCLEAR PHYSICS OF FUSION;55
8.2.3;2.3 THE CONTAINMENT PROBLEM;57
8.2.4;2.4 MAGNETIC CONTAINMENT;59
8.2.5;2.5 REACTOR PROBLEMS;61
8.2.6;2.6 CONCLUSIONS;61
8.2.7;REFERENCES;62
8.2.8;ADDITIONAL GENERAL REFERENCES;62
8.3;Chapter 3. Introduction to Plasma Physics;64
8.3.1;3.1 INTRODUCTION;64
8.3.2;3.2 DEBYE SCREENING AND NEUTRALITY;65
8.3.3;3.3 COULOMB SCATTERING;66
8.3.4;3.4 PLASMA CONDUCTIVITY;67
8.3.5;3.5 ELECTRON RUNAWAY;68
8.3.6;3.6 HIGH FREQUENCY RESPONSE OF PLASMA;68
8.3.7;3.7 ELECTROMAGNETIC WAVE PROPAGATION IN A PLASMA;69
8.3.8;3.8 MAGNETIC PROPERTIES;70
8.3.9;3.9 EQUILIBRIUM IN A MAGNETIC FIELD;71
8.3.10;3.10 DIFFUSION ACROSS A MAGNETIC FIELD;72
8.3.11;3.11 WAVES;74
8.3.12;REFERENCES;74
8.3.13;GENERAL REFERENCES;74
9;Section II: THEORY;76
9.1;Chapter 4. Magnetohydrodynamics;78
9.1.1;4.1 INTRODUCTION;78
9.1.2;4.2 THE ELECTRODYNAMICS OF DEFORMABILE MEDIA;79
9.1.3;4.3 SOME CONSEQUENCES OF THE ELECTRODYNAMIC EQUATIONS;81
9.1.4;4.4 FLUID EQUATIONS;83
9.1.5;4.5 BOUNDARY CONDITIONS;85
9.1.6;4.6 MAGNETOSTATIC EQUATIONS AND MHD EQUILIBRIA;86
9.1.7;REFERENCES;90
9.2;Chapter 5. Particle Orbit Theory;92
9.2.1;5.1 INTRODUCTION;92
9.2.2;5.2 MOTION IN CONSTANT UNIFORM FIELDS;93
9.2.3;5.3 INHOMOGENEOUS AND TIME VARYING FIELDS;96
9.2.4;5.4 ADIABATIC INVARIANTS;103
9.2.5;REFERENCES;111
9.3;Chapter 6. Plasma Waves;112
9.3.1;6.1 INTRODUCTION;112
9.3.2;6.2 EQUATIONS OF MOTION;112
9.3.3;6.3 WAVES IN AN DEMAGNETIZED PLASMA;115
9.3.4;6.4 WAVES IN A COLD MAGNETIZED PLASMA;120
9.3.5;6.5 MAGNETOSONIC WAVES;133
9.3.6;6.6 WAVES ON PLASMA STREAMS;135
9.3.7;REFERENCES;138
9.4;Chapter 7. Kinetic Theory;140
9.4.1;7.1 INTRODUCTION;140
9.4.2;7.2 EQUATIONS FOR THE DISTRIBUTION FUNCTIONS;141
9.4.3;7.3 NEAR-EQUILIBRIUM PLASMA;146
9.4.4;7.4 VLASOV EQUATION;147
9.4.5;7.5 COLLISIONAL KINETIC EQUATIONS;148
9.4.6;7.6 FOKKER-PLANCK EQUATION;151
9.4.7;7.7 RELAXATION TIMES;156
9.4.8;7.8 LANDAU DAMPING;161
9.4.9;7.9 ION ACOUSTIC INSTABILITY;168
9.4.10;7.10 THE BERNSTEIN MODES;170
9.4.11;REFERENCES;174
9.5;Chapter 8. Transport Theory;176
9.5.1;8.1 GENERAL INFORMATION;176
9.5.2;8.2 CONTINUUM EQUATIONS FOR A TWO-FLUID PLASMA;178
9.5.3;8.3 QUALITATIVE DERIVATION OF TRANSPORT COEFFICIENTS;181
9.5.4;8.4 DERIVATION OF TRANSPORT COEFFICIENTS FROM KINETIC THEORY;187
9.5.5;8.5 THE ONSAGER PRINCIPLE;191
9.5.6;B.6 SINGLE-FLUID MODEL;192
9.5.7;8.7 TRANSPORT THEORY FOR TOROIDAL SYSTEMS;194
9.5.8;8.8 DRIFT KINETIC EQUATIONS;200
9.5.9;8.9 SOLUTION OF THE DRIFT KINETIC EQUATION;202
9.5.10;8.10 EXPERIMENTAL TESTS OF TRANSPORT THEORY;206
9.5.11;REFERENCES;210
9.6;Chapter 9. MHD Stability Theory;212
9.6.1;9.1 INTRODUCTION;212
9.6.2;9.2 RAYLEIGH-TAYLOR INSTABILITY;214
9.6.3;9.3 ENERGY PRINCIPLE;225
9.6.4;9.4 CYLINDRICAL PINCH;229
9.6.5;9.5 RESISTIVE INSTABILITIES;237
9.6.6;9.6 STABILITY OF TOKAMAKS;243
9.6.7;9.7 INSTABILITIES IN TOKAMAKS;250
9.6.8;BIBLIOGRAPHY;254
9.7;Chapter 10. Plasma Radiation;256
9.7.1;10.1 INTRODUCTION;256
9.7.2;10.2 THERMAL EQUILIBRIA;258
9.7.3;10.3 IONIZATION AND RECOMBINATION PROCESSES WHICH DETERMINE THE STATE OF IONIZATION OF IMPURITIES;260
9.7.4;10.4 THE STEADY-STATE IONIZATION BALANCE;273
9.7.5;10.5 TIME-DEPENDENT IONIZATION AND RECOMBINATION;276
9.7.6;10.6 EXCITATION AND SPECTRAL LINE INTENSITIES;276
9.7.7;10.7 RADIATION TRAPPING;289
9.7.8;10.8 THE RADIATED POWER LOSS FOR A PLASMA IN STEADYSTATE IONIZATION BALANCE;290
9.7.9;REFERENCES;296
10;Section III: ADVANCEDTHEORY;298
10.1;Chapter 11. Microinstabilities;300
10.1.1;11.1 INTRODUCTION;300
10.1.2;11.2 THE DRIFT WAVE DISPERSION EQUATION AND A PHYSICAL PICTURE OF A DRIFT WAVE;302
10.1.3;11.3 DISSIPATIVE MECHANISMS GIVING INSTABILITY;307
10.1.4;11.4 RADTAL LOCALIZATION AND STABILIZATION BY SHEAR;309
10.1.5;REFERENCES;312
10.2;Chapter 12. Plasma Turbulence;314
10.2.1;12.1 INTRODUCTION;314
10.2.2;12.2 QUASI-LINEAR THEORY;318
10.2.3;12.3 NONLINEAR THEORIES;320
10.2.4;REFERENCES;325
10.3;Chapter 13. Anomalous Transport Theory;326
10.3.1;13.1 INTRODUCTION;326
10.3.2;13.2 QUASILINEAR THEORY;327
10.3.3;13.3 UPPER LIMIT ON THE WAVE AMPLITUDE;329
10.3.4;13.4 ANALYTIC ESTIMATES OF THE SATURATION LEVEL;330
10.3.5;13.5 PHYSICAL PROCESSES DESCRIBED BY QUASILINEAR THEORY;332
10.3.6;13.6 DUPREE-TYPE THEORIES;333
10.3.7;13.7 EFFECT OF MAGNETIC FIELD FLUCTUATIONS;333
10.3.8;13.8 COMPARISON OF THEORY AND EXPERIMENT;335
10.3.9;13.9 1-D COMPUTATIONS;336
10.3.10;13.10 CONCLUSIONS;338
10.3.11;REFERENCES;339
10.4;Chapter 14. Nonlinear Laser Plasma Interaction Theory;340
10.4.1;14.1 INTRODUCTION;340
10.4.2;14.2 GENERAL DISCUSSION OF PARAMETRIC INSTABILITY;341
10.4.3;14.3 QUALITATIVE DESCRIPTION OF PARAMETRIC INSTABILITIES IN AN UNMAGNETISED PLASMA;343
10.4.4;14.4 QUANTITATIVE DESCRIPTION OF PARAMETRIC INSTABILITIES;347
10.4.5;14.5 INHOMOGENEOUS PLASMA;354
10.4.6;14.6 M0DULATI0NAL INSTABILITIES AND FOUR WAVE INTERACTIONS;356
10.4.7;14.7 FILAMENTATION;363
10.4.8;14.8 THE LANGMUIR MODULATION INSTABILITY AND LANGMUIR TURBULENCE;367
10.4.9;14.9 RESONANCE ABSORPTION;370
10.4.10;14.10 CONCLUSION;374
10.4.11;REFERENCES;374
10.4.12;ADDITIONAL GENERAL REFERENCES;375
11;Section IV: EXPERIMENTAL DEVICES;376
11.1;Chapter 15. Pinch and Tokamak Confinement Devices;378
11.1.1;15.1 INTRODUCTION;378
11.1.2;15.2 MAGNETIC CONFINEMENT;379
11.1.3;15.3 TOROIDAL CONFINEMENT SYSTEMS;379
11.1.4;15.4 STABILITY;383
11.1.5;15.5 TECHNOLOGY OF TOROIDAL CONFINEMENT SYSTEMS;386
11.1.6;15.6 PROGRESS IN TOKAMAK EXPERIMENTS;390
11.1.7;15.7 ADDITIONAL HEATING;394
11.1.8;15.8 PLASMA FUELLING;397
11.1.9;15.9 IMPURITY CONTROL;397
11.1.10;15.10 SCREW PINCHES AND BELT PINCHES;398
11.1.11;15.11 REVERSE FIELD PINCHES;399
11.1.12;15.12 FUTURE DEVICES;401
11.1.13;15.13 CONCLUSIONS;402
11.1.14;REFERENCES;403
11.2;Chapter 16. Stellarator Confinement Devices;406
11.2.1;16.1 BASIC BACKGROUND;406
11.2.2;16.2 MAGNETIC TOPOLOGY;407
11.2.3;16.3 STELLARATOR EQUILIBRIUM;409
11.2.4;16.4 STELLARATOR STABILITY;410
11.2.5;16.5 EXPERIMENTS –
HISTORICAL;410
11.2.6;16.6 EXPERIMENTS –
RECENT RESULTS;413
11.2.7;16.7 OTHER FORMS OF PLASMA PRODUCTION AND HEATING;415
11.2.8;16.8 REACTOR POSSIBILITIES;417
11.2.9;16.9 CONCLUSIONS;418
11.2.10;REFERENCES;419
11.3;Chapter 17. Mirror Devices;422
11.3.1;17.1 INTRODUCTION;422
11.3.2;17.2 MIRROR CONFINEMENT;423
11.3.3;17.3 MIRROR INSTABILITIES AND MINIMUM B;425
11.3.4;17.4 MICRO-INSTABILITIES;427
11.3.5;17.5 CLASSICAL DIFFUSION LOSSES;429
11.3.6;17.6 THE TANDEM CONCEPT;430
11.3.7;17.7 ON THE POSSIBILITY OF A MIRROR REACTOR;432
11.3.8;17.8 FURTHER READING;433
11.3.9;REFERENCES;434
11.4;Chapter 18. The Next Generation Tokamaks;436
11.4.1;18.1 INTRODUCTION;436
11.4.2;18.2 THE STATUS OF TOKAMAK RESEARCH;438
11.4.3;18.3 TOKAMAK SUBSYSTEMS
– DESIGN CONSIDERATIONS;442
11.4.4;18.4 THE NEXT GENERATION;449
11.4.5;REFERENCE;452
11.5;Chapter 19. Fusion Reactor Studies;454
11.5.1;19.1 INTRODUCTION;454
11.5.2;19.2 TYPES OF REACTOR STUDIES;454
11.5.3;19.3 THE OBJECTIVES OF REACTOR STUDIES;456
11.5.4;19.4 DESCRIPTION OF REACTOR DESIGNS;457
11.5.5;19.5 ASSESSMENTS OF FUSION REACTORS;466
11.5.6;19.6 CONCLUSION;471
11.5.7;REFERENCES;472
12;Section V: HEATING AND DIAGNOSTICS;474
12.1;Chapter 20. Neutral Injection Plasma Heating;476
12.1.1;20.1 INTRODUCTION;476
12.1.2;20.2 NEUTRAL INJECTION HEATING;476
12.1.3;20.3 THE NEUTRAL INJECTION SYSTEM;482
12.1.4;20.4 RESULTS;494
12.1.5;20.5 SUMMARY AND CONCLUSIONS;494
12.1.6;REFERENCES;496
12.2;Chapter 21. The Theory of Radio Frequency Plasma Heating;498
12.2.1;21.1 INTRODUCTION;498
12.2.2;21.2 NON-OSCILLATORY AND LOW-FREQUENCY SCHEMES;498
12.2.3;21.3 HIGH-FREQUENCY WAVES –
PROPAGATION AND ABSORPTION;500
12.2.4;21.4 SPECIFIC HEATING SCHEMES;506
12.2.5;21.5 CONCLUSIONS;518
12.2.6;REFERENCES;519
12.3;Chapter 22. Radio Frequency Plasma Heating Experiments;522
12.3.1;22.1 INTRODUCTION;522
12.3.2;22.2 TRANSIT TIME MAGNETIC PUMPING;524
12.3.3;22.3 HEATING IN THE ION CYCLOTRON RANGE OF FREQUENCIES;529
12.3.4;22.4 LOWER HYBRID RESONANCE HEATING;537
12.3.5;22.5 ELECTRON CYCLOTRON RESONANCE HEATING;546
12.3.6;22.6 RF CURRENT DRIVE;553
12.3.7;22.7 CONCLUSIONS;553
12.3.8;REFERENCES;554
12.4;Chapter 23. Plasma Diagnostics Using Lasers;556
12.4.1;23.1 INTRODUCTION;556
12.4.2;23.2 LASER INTERFEROMETRY FOR ELECTRON DENSITY MEASUREMENTS;557
12.4.3;23.3 THOMSON SCATTERING FOR ELECTRON TEMPERATURE, DENSITY AND ION TEMPERATURE MEASUREMENTS;561
12.4.4;REFERENCES;571
12.5;Chapter 24. X-ray and Particle Diagnostics;572
12.5.1;24.1 X-RAY CONTINUUM MEASUREMENTS;572
12.5.2;24.2 X-RAY PINHOLE TECHNIQUES;576
12.5.3;24.3 RUNAWAY ELECTRONS;581
12.5.4;24.4 NEUTRON DIAGNOSTIC METHODS;583
12.5.5;24.5 ION TEMPERATURE MEASUREMENTS USING CHARGE-EXCHANGE;585
12.5.6;REFERENCES;588
12.5.7;ADDITIONAL GENERAL REFERENCES;589
13;Section VI: FURTHER TOPICS;590
13.1;Chapter 25. Inertial Confinement;592
13.1.1;25.1 FUSION IN INERTIALLY CONFINED PLASMAS;592
13.1.2;25.2 HYDRODYNAMIC COMPRESSION;594
13.1.3;25.3 DEGENERACY;601
13.1.4;25.4 RAYLEIGH-TAYLOR INSTABILITY;601
13.1.5;25.5 ABLATION PRESSURE;603
13.1.6;25.6 ABLATION DRIVING MECHANISMS;605
13.1.7;25.7 LASER COMPRESSION;606
13.1.8;25.8 SPHERES AND SHELLS;608
13.1.9;25.9 LASER-PLASMA COUPLING;608
13.1.10;25.10 PROFILE MODIFICATION;609
13.1.11;25.11 FLUX LIMITATION;610
13.1.12;25.12 EFFECTS OF RAYLEIGH-TAYLOR INSTABILITY;612
13.1.13;25.13 LASER FUSION-EFFICIENCY CONSIDERATIONS;613
13.1.14;25.14 EXPLODING PUSHER TARGETS;614
13.1.15;25.15 ABLATIVE COMPRESSION;616
13.1.16;25.16 LASER CONSIDERATIONS;617
13.1.17;REFERENCES;618
13.2;Chapter 26. Charged Particle Beams;620
13.2.1;26.1 INTRODUCTION;620
13.2.2;26.2 CHARGED PARTICLE OPTICS;621
13.2.3;26.3 THE EMITTANCE CONCEPT;624
13.2.4;26.4 THE EFFECT OF SELF-FIELDS;626
13.2.5;26.5 CLASSES OF BEAM BEHAVIOUR;627
13.2.6;26.6 WAVES ON BEAMS, INTRODUCTORY REMARKS;628
13.2.7;26.7 STREAMING PLASMA;629
13.2.8;26.8 TWO OR MORE STREAMING PLASMAS;632
13.2.9;26.9 BEAMS OF FINITE CROSS SECTION;634
13.2.10;26.10 THE EFFECT OF ARBITRARY WALL IMPEDANCE;636
13.2.11;26.11 LANDAU DAMPING;637
13.2.12;26.12 COUPLED MODES;637
13.2.13;26.13 CONCLUSIONS;638
13.2.14;REFERENCES;639
13.3;Chapter 27. Astrophysical Plasmas;640
13.3.1;27.1 INTRODUCTION;640
13.3.2;27.2 DOUBLE EXTRAGALACTIC RADIOSOURCES;646
13.3.3;27.3 PULSARS;651
13.3.4;27.4 MAGNETIC FIELDS IN STARS;655
13.3.5;27.5 THE SOLAR PLASMA;658
13.3.6;27.6 CONCLUSION;661
13.3.7;REFERENCES;661
13.4;Chapter 28. Computational Plasma Physics;664
13.4.1;28.1 INTRODUCTORY IDEAS ON COMPUTER SIMULATIONS;664
13.4.2;28.2 EQUILIBRIA AND TRANSPORT;671
13.4.3;28.3 DYNAMICS OF A MAGNETIZED FLUID;681
13.4.4;28.4 PARTICLE METHODS AND PHASE SPACE;690
13.4.5;28.5 DISCUSSION;698
13.4.6;REFERENCES;700
14;Definitions;702
15;Units;704
16;Index;706