Gilks / Richardson / Spiegelhalter | Markov Chain Monte Carlo in Practice | Buch | 978-0-412-05551-5 | sack.de

Buch, Englisch, 504 Seiten, Format (B × H): 162 mm x 241 mm, Gewicht: 1090 g

Reihe: Chapman & Hall/CRC Interdisciplinary Statistics

Gilks / Richardson / Spiegelhalter

Markov Chain Monte Carlo in Practice


1. Auflage 1995
ISBN: 978-0-412-05551-5
Verlag: Taylor & Francis Ltd

Buch, Englisch, 504 Seiten, Format (B × H): 162 mm x 241 mm, Gewicht: 1090 g

Reihe: Chapman & Hall/CRC Interdisciplinary Statistics

ISBN: 978-0-412-05551-5
Verlag: Taylor & Francis Ltd


In a family study of breast cancer, epidemiologists in Southern California increase the power for detecting a gene-environment interaction. In Gambia, a study helps a vaccination program reduce the incidence of Hepatitis B carriage. Archaeologists in Austria place a Bronze Age site in its true temporal location on the calendar scale. And in France, researchers map a rare disease with relatively little variation.

Each of these studies applied Markov chain Monte Carlo methods to produce more accurate and inclusive results. General state-space Markov chain theory has seen several developments that have made it both more accessible and more powerful to the general statistician. Markov Chain Monte Carlo in Practice introduces MCMC methods and their applications, providing some theoretical background as well. The authors are researchers who have made key contributions in the recent development of MCMC methodology and its application.

Considering the broad audience, the editors emphasize practice rather than theory, keeping the technical content to a minimum. The examples range from the simplest application, Gibbs sampling, to more complex applications. The first chapter contains enough information to allow the reader to start applying MCMC in a basic way. The following chapters cover main issues, important concepts and results, techniques for implementing MCMC, improving its performance, assessing model adequacy, choosing between models, and applications and their domains.

Markov Chain Monte Carlo in Practice is a thorough, clear introduction to the methodology and applications of this simple idea with enormous potential. It shows the importance of MCMC in real applications, such as archaeology, astronomy, biostatistics, genetics, epidemiology, and image analysis, and provides an excellent base for MCMC to be applied to other fields as well.

Gilks / Richardson / Spiegelhalter Markov Chain Monte Carlo in Practice jetzt bestellen!

Zielgruppe


Professional and Professional Practice & Development

Weitere Infos & Material


INTRODUCING MARKOV CHAIN MONTE CARLO; HEPATITIS B: A CASE STUDY IN MCMC METHODS; MARKOV CHAIN CONCEPTS RELATED TO SAMPLING ALGORITHMS; INTRODUCTION TO GENERAL STATE-SPACE MARKOV CHAIN THEORY; FULL CONDITIONAL DISTRIBUTIONS; STRATEGIES FOR IMPROVING MCMC; IMPLEMENTING MCMC; INFERENCE AND MONITORING CONVERGENCE; MODEL DETERMINATION USING SAMPLING-BASED METHODS; HYPOTHESIS TESTING AND MODEL SELECTION; MODEL CHECKING AND MODEL IMPROVEMENT; STOCHASTIC SEARCH VARIABLE SELECTION; BAYESIAN MODEL COMPARISON VIA JUMP DIFFUSIONS; ESTIMATION AND OPTIMIZATION OF FUNCTIONS; STOCHASTIC EM: METHOD AND APPLICATION; GENERALIZED LINEAR MIXED MODELS; HIERARCHICAL LONGITUDINAL MODELLING; MEDICAL MONITORING; MCMC FOR NONLINEAR HIERARCHICAL MODELS; BAYESIAN MAPPING OF DISEASE; MCMC IN IMAGE ANALYSIS; MEASUREMENT ERROR; GIBBS SAMPLING METHODS IN GENETICS; MIXTURES OF DISTRIBUTIONS: INFERENCE AND ESTIMATION; AN ARCHAEOLOGICAL EXAMPLE: RADIOCARBON DATING


W.R. Gilks Institute of Public Health, Cambridge, UK; S. Richardson Imperial College, London, UK; David Spiegelhalter MRC Biostatistics Unit, Cambridge, UK.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.