Gibbs / Khitrova / Peyghambarian | Nonlinear Photonics | E-Book | sack.de
E-Book

E-Book, Englisch, Band 30, 209 Seiten, eBook

Reihe: Springer Series in Electronics and Photonics

Gibbs / Khitrova / Peyghambarian Nonlinear Photonics


1990
ISBN: 978-3-642-75438-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 30, 209 Seiten, eBook

Reihe: Springer Series in Electronics and Photonics

ISBN: 978-3-642-75438-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Nonlinear photonics is the name given to the use of nonlinear optical devices for the generation, communication, processing, or analysis of information. This book is a progress report on research into practical applications of such devices. At present, modulation, switching, routing, decision-making, and detection in photonic systems are all done with electronics and linear optoelectronic devices. However, this may soon change, as nonlinear optical devices, e.g. picosecond samplers and switches, begin to complement optoelectonic devices. The authors succinctly summarize past accomplishments in this field and point to hopes for the future, making this an ideal book for newcomers or seasoned researchers wanting to design and perfect nonlinear optical devices and to identify applications in photonic systems.

Gibbs / Khitrova / Peyghambarian Nonlinear Photonics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Nonlinear Photonics: Prospects and Problems.- 1.1 Nonlinear Materials.- 1.2 Nonlinear Devices.- 1.3 Applications of Nonlinear Photonics.- 1.4 Conclusion.- References.- 2. Semiconductor Nonlinear Materials.- 2.1 Optical Nonlinearities in Bulk Semiconductors.- 2.1.1 GaAs.- 2.1.2 ZnSe.- 2.1.3 CdS.- 2.1.4 CuCl.- 2.1.5 InSb, InAs, and CdHgTe.- 2.1.6 Thermal Nonlinearities in GaAs, CdS, ZnSe, and ZnS.- 2.2. Optical Nonlinearities in Low-Dimensional Semiconductors.- 2.2.1 Quantum Wells.- 2.2.2 Quantum Wires, Quantum Dots, and Semiconductor Doped Glasses.- 2.3 Optical Bistability and Nonlinear Optical Semiconductor Devices.- 2.3.1 Optical Bistability in Etalon Devices.- 2.3.2 Optical Bistability in Semiconductor Waveguide Devices.- 2.3.3 Optical Bistability in SEEDs.- 2.3.4 Thermal Etalon Devices.- 2.3.5 Optical Logic Gates.- 2.3.6 Use of the Optical Stark Effect in Logic Gates.- 2.3.7 Gain and Cascading Issues in Nonlinear Etalons.- 2.4 Conclusion.- References.- 3. Optical Interconnects.- 3.1 Potential Advantages of Optical Interconnects.- 3.2 Comparison of Electrical and Optical Interconnections.- 3.2.1 Electrical Interconnect Power Requirements.- 3.2.2 Optical Interconnects.- 3.2.3 Fan-Out.- 3.2.4 Ideal Optical Sources.- 3.2.5 Real Optical Sources.- 3.2.6 LED Emission Characteristics.- 3.2.7 Laser Diode Characteristics.- 3.3 Optical Distribution Techniques.- 3.3.1 Guided Optical Distribution Techniques.- 3.3.2 Free Space Distribution Methods.- 3.4 First-Order Analysis of Holographic Interconnects.- 3.4.1 Interconnect Parameters.- 3.4.2 Interconnect Designs.- 3.4.3 Comparison of Designs.- 3.4.4 Higher-Order Design Considerations.- 3.5 Summary and Future Directions.- References.- 4. First Implementations of Optical Digital Computing Circuits Using Nonlinear Devices.- 4.1 Introduction.- 4.1.1 Optical Computing Architecture Considerations.- 4.1.2 Optical Logic Devices.- 4.2 Optical Bistability and Optical Logic.- 4.2.1 Refractive Optical Bistability.- 4.2.2 Early Demonstrations of Refractive Bistability.- 4.2.3 Optical Bistable Etalons as Logic and Memory Elements.- 4.2.4 Practical Aspects of Devices for Experimental Optical Digital Processors.- 4.3 Nonlinear Interference Filters as Optical Logic Elements.- 4.3.1 Bistability in Interference Filters.- 4.3.2 Linear Interference Filters.- 4.3.3 Nonlinear Interference Filters — Early Experiments.- 4.3.4 Theory and Optimization of NLIFs.- 4.3.5 Performance Limits of NLIFs.- 4.3.6 Bistable Etalons with Absorbed Transmission.- 4.4 All-Optical Digital Computing Circuits.- 4.4.1 Background.- 4.4.2 Coupled-Switch Circuits.- 4.4.3 Lock-and-Clock Loop Processors.- 4.4.4 Image Processing.- 4.4.5 Numerical Processing.- 4.4.6 Communication Applications.- 4.5 Conclusions.- References.- 5. Optical Processing with Nonlinear Photorefractive Crystals.- 5.1 Characteristic Parameters of Photorefractive Crystals.- 5.1.1 Crystal Sensitivity.- 5.1.2 Steady-State Diffraction Efficiency.- 5.1.3 Response Time of the Photorefractive Effect.- 5.2 Beam Coupling in Photorefractive Crystals.- 5.2.1 Influence of the Recording Parameters (Spatial Frequency, Fringe Velocity, Beam Ratio).- 5.2.2 Summary of Crystal Performance.- 5.3 Application of Beam Coupling to Optical Computing Operations.- 5.3.1 Image Amplification.- 5.3.2 Phase Conjugation in Photorefractive Crystals.- 5.3.3 Self-Pumped Phase Conjugation.- 5.3.4 Laser Beam Steering/Optical Interconnections.- 5.3.5 Self-Induced Optical Cavities.- 5.3.6 Optical Logic Gates and Parallel Algorithmic State Machines.- 5.3.7 Image Subtraction Using a Self-Pumped Phase Conjugate Mirror Interferometer.- 5.3.8 Novelty Filters.- 5.3.9 Image Convolution and Correlation.- 5.3.10 Coherent Homodyne Detection.- 5.4 Optical Memories with Photorefractive Crystals.- 5.4.1 Multiple Image Storage.- 5.4.2 Associative Memories.- 5.5 Concluding Remarks.- References.- 6. All-Optical Guided-Wave Devices for Switching and Routing.- 6.1 Introduction.- 6.1.1 Speed or Parallelism?.- 6.1.2 Material Requirements.- 6.1.3 Fiber and Planar Waveguide Devices.- 6.2 Interferometric Devices.- 6.2.1 Mach-Zehnder Interferometers.- 6.2.2 Kerr Shutters.- 6.2.3 Dual-Mode Interferometers.- 6.3 Dual-Mode Switches.- 6.3.1 Nonlinear Directional Couplers.- 6.3.2 Experimental Nonlinear Directional Coupler Studies.- 6.3.3 Polarization Switching and Other Analogs.- 6.3.4 Nonlinear Waveguide Junctions.- 6.3.5 The Pulse Breakup Problem.- 6.4 Other Nonlinear Switching Phenomena.- 6.4.1 Nonlinear Parametric Processes and All-Optical Switching.- 6.4.2 Self-Trapping Devices.- 6.5 Conclusion.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.