Gheorghe | Decision Processes in Dynamic Probabilistic Systems | E-Book | sack.de
E-Book

E-Book, Englisch, Band 42, 376 Seiten, eBook

Reihe: Mathematics and its Applications

Gheorghe Decision Processes in Dynamic Probabilistic Systems

E-Book, Englisch, Band 42, 376 Seiten, eBook

Reihe: Mathematics and its Applications

ISBN: 978-94-009-0493-4
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark



Gheorghe Decision Processes in Dynamic Probabilistic Systems jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Semi-Markov and Markov Chains.- 1.1 Definitions and basic properties.- 1.2 Algebraic and analytical methods in the study of Markovian systems.- 1.3 Transient and recurrent processes.- 1.4 Markovian populations.- 1.5 Partially observable Markov chains.- 1.6 Rewards and discounting.- 1.7 Models and applications.- 1.8 Dynamic-decision models for clinical diagnosis.- 2 Dynamic and Linear Programming.- 2.1 Discrete dynamic programming.- 2.2 A linear programming formulation and an algorithm for computation.- 3 Utility Functions and Decisions under Risk.- 3.1 Informational lotteries and axioms for utility functions.- 3.2 Exponential utility functions.- 3.3 Decisions under risk and uncertainty; event trees.- 3.4 Probability encoding.- 4 Markovian Decision Processes (Semi-Markov and Markov) with Complete Information (Completely Observable).- 4.1 Value iteration algorithm (the finite horizon case).- 4.2 Policy iteration algorithm (the finite horizon optimization).- 4.3 Policy iteration with discounting.- 4.4 Optimization algorithm using linear programming.- 4.5 Risk-sensitive decision processes.- 4.6 On eliminating sub-optimal decision alternatives in Markov and semi-Markov decision processes.- 5 Partially Observable Markovian Decision Processes.- 5.1 Finite horizon partially observable Markov decision processes.- 5.2 The infinite horizon with discounting for partially observable Markov decision processes.- 5.3 A useful policy iteration algorithm, for discounted (? < 1) partially observable Markov decision processes.- 5.4 The infinite horizon without discounting for partially observable Markov processes.- 5.5 Partially observable semi-Markov decision processes.- 5.6 Risk-sensitive partially observable Markov decision processes.- 6 Policy Constraints in Markov DecisionProcesses.- 6.1 Methods of investigating policy costraints in Markov decision processes.- 6.2 Markov decision processes with policy constraints.- 6.3 Risk-sensitive Markov decision process with policy constraints.- 7 Applications.- 7.1 The emergency repair control for electrical power systems.- 7.2 Stochastic models for evaluation of inspection and repair schedules [2].- 7.3 A Markovian dicision model for clinical diagnosis and treatment applied to the respiratory system.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.